DOI QR코드

DOI QR Code

A Study on Numerical Analysis for GPR Signal Characterization of Tunnel Lining Cavities

터널 라이닝 공동에 대한 GPR 신호 특성 분석을 위한 수치해석 연구

  • Go, Gyu-Hyun (Dept. of Civil Engrg., Kumoh National Institute of Technology) ;
  • Lee, Sung Jin (Advanced Infrastructure Convergence Research Department, Korea Railroad Research Institute)
  • 고규현 (금오공과대학교 토목공학과) ;
  • 이성진 (한국철도기술연구원 첨단인프라융합연구실)
  • Received : 2021.09.10
  • Accepted : 2021.10.19
  • Published : 2021.10.31

Abstract

There is a possibility of cavities occurring inside and behind the lining of an aged tunnel structure. In most cases, it is not easy to check the cavity because it exists in a place where visual inspection is impossible. Recently, attempts have been made to evaluate the condition of the tunnel lining and the backfill materials using non-destructive tests such as Ground Penetrating Radar, and various related model tests and numerical analysis studies have been conducted. In this study, the GPR signal characteristics for tunnel lining model testing were analyzed using gprMax software, which was compared with model test results. The numerical model applied to the model test reasonably simulated the electromagnetic wave signal according to the change of the material such as tunnel lining and internal cavity. Using the verified GPR model, B-scan data for the development of the GPR signal analysis technique were obtained, which can evaluate the thickness of the tunnel lining, the presence of the cavity, the effect of the waterproof membrane, and the frequency band.

노후화된 터널 구조물의 라이닝 내부 및 배면에 존재하는 공동은 다양한 원인에 의해 발생되며 대부분의 경우 육안검사가 불가능한 곳에 존재하기 때문에 이에 대한 점검이 쉽지 않다. 최근에는 지반탐사레이더와 같은 비파괴시험 등을 이용하여 터널 라이닝과 배면에 대한 상태를 평가하는 시도가 이루어지고 있으며, 이와 관련된 다양한 모형시험 및 해석연구가 수행되고 있다. 본 연구에서는 gprMax 소프트웨어를 이용하여 터널 라이닝 모형 시험체 조건에 대한 GPR 신호특성을 시각화하여 분석하였고, 이를 모형체 시험 결과와 비교하였다. 모형체 시험에 적용된 GPR 해석모델은 터널 라이닝 및 내부 공동 등 매질 변화에 대한 전자기파 신호변화를 합리적으로 모사하였다. 검증된 수치해석모델을 이용하여 터널 라이닝의 두께, 내부의 공동 존재와 규모, 방수막의 영향, 주파수대역의 영향 등을 평가하기 위한 GPR 분석 기법 개발에 필요한 데이터를 확보하였다.

Keywords

Acknowledgement

이 연구는 한국철도기술연구원(GPR 기반 철도 터널 구조물 및 배면 검측 기술 개발, PK2104B3)의 지원으로 수행되었습니다.

References

  1. Anne, L., Matthew, A., Lebens, M., Hoff, I., and Grov, E. (2016), "Detection of Rockfall on a Tunnel Concrete Lining with Ground-Penetrating Radar", Rock Mech Rock Eng, Vol.49, pp.2811-2823. https://doi.org/10.1007/s00603-016-0943-y
  2. Cardarelli, E., Marrone, C., and Orlando, L. (2003), "Evaluation of Tunnel Stability Using Integrated Geophysical Methods", J. Appl Geophysics, Vol.5, No.2, pp.93-102. https://doi.org/10.1016/S0926-9851(02)00242-2
  3. Cassidy, N. (2008), Introduction to gpr. In Workshop at the 12th International Conference on Ground Penetrating Radar. (Cited on pages xiv, xix, 10, 14, and 19.)
  4. Cheon, S.W. (2016), GPR response analysis using numerical modeling for cavity detection, Master's thesis, Sejong University.
  5. Feng, D., Wang, X., and Zhang, B. (2018), "Specific Evaluation of Tunnel Lining Multi-defects by All-refined GPRsimulation Method Using Hybrid Algorithm of FETD and FDTD", Construction and Building Materials, Vol.185, pp.220-229. https://doi.org/10.1016/j.conbuildmat.2018.07.039
  6. Giannopoulos, A. (2005) "Modeling Ground Penetrating Radar by GprMax", Constructions and Buildings Materials, Vol.19, pp.755-762. https://doi.org/10.1016/j.conbuildmat.2005.06.007
  7. Hong, W.T., Kang, S.H., and Lee, J.S. (2015), Application of Ground Penetrating Radar for Estimation of Loose Layer, Journal of the Korean Geotechnical Society, Vol.31, No.11, pp.41-48. https://doi.org/10.7843/KGS.2015.31.11.41
  8. Jang, H., Kim, H.J., and Nam, M.J. (2016), Three-dimensional Finite-difference Time-domain Modeling of Ground-penetrating Radar Survey for Detection of Underground Cavity, Geophysics and Geophysical Exploration, Vol.19, No.1, pp.20-28. https://doi.org/10.7582/GGE.2016.19.1.020
  9. KALIS (2020), Gyeongbu Hige-Speed Line Cheonan-Asan to Daejeon Unju Tunnel and other facilities Precise Safety Diagnosis Report, Korea.
  10. Kim, Y.J., Lee, S.S., Ahn, B.Y., and Kim, Y.G. (2000), "Examination on the Influence of Depth, Size and Interval of Rebar on the Signal of Ground Penetrating Radar", Journal of the Korea Institute for Structural Maintenance Inspection, Vol.4, No.2, pp.167-174.
  11. Kim, Y.K., Lee, Y.H., Jeong, H.J., Shin, S.B., and Cho, C.H. (1997) "Non-Destructive Test for Tunnel Lining Using Ground Penetrating Radar", Tunnel and Underground Space, Vol.7, No.4, pp.274-283.
  12. Lee, S.J., Lee, J.W., Chae, D.H., and Choi, J.S. (2019), "Model Test for Detection of Cavity in Tunnel Lining by GPR", Vol.22, No.7, pp.572-583.
  13. Li, C., Li, M.J., Zhao, Y.G., Liu, H., Wan, Z., and Xu J.C. (2011), "Layer Recognition and Thickness Evaluation of Tunnel Lining based on Ground Penetrating Radar Measurements", J. Appl. Geophys., Vol.73, No.1, pp.45-48. https://doi.org/10.1016/j.jappgeo.2010.11.004
  14. Li, S., Li, S., Zhang, Q., Xue, Y., Liu, B., and Su M. (2010), "Predicting Geological Hazards during Tunnel Construction", J. Rock Mech. Geotech. Eng., Vol.2, pp.232-242. https://doi.org/10.3724/sp.j.1235.2010.00232
  15. Liu, S., Zeng, Z., and Deng, L. (2007), "FDTD Simulations for Ground Penetrating Radar in Urban Applications", J. Geophys. Eng., Vol.4, pp.262-267. https://doi.org/10.1088/1742-2132/4/3/S04
  16. Park, S.G. and Cho, S.D. (2006), An Mod el tests and Analysis on Estimation of Continuous Cavitation(Void)s under Concrete Slabs and Tunnel Linings Using Law Frequency Type Radar(GPR), KSCE Conference, pp.4302-4305.
  17. Song, K.I., Cho, G.C., Jang, S.B., and Hong, E.S. (2009), "Evaluation of Bonding State of Shotcrete Lining Using Nondestructive Testing Methods- Experimental Analysis", Korean Tunnelling and Underground Space Assocation, Vol.11, No.1, pp.71-83.
  18. Taguchi, G., Chowdbury, S., and Wu, Y. (2005), Taguchi's quality engineering handbook, John Wiley and Sons, Inc.
  19. Warren, C. and Giannopoulos, A. (2011), "Creating FDTD Models of Commercial GPR Antennas Using Taguchi's Optimisation Method", Geophysics, Vol.76, pp.G37. https://doi.org/10.1190/1.3548506
  20. Xiang, I., Zhou, H.I., Shu, Z., Tan, S.H., Liang, G.Q., and Zhu J. (2013), "GPR evaluation of the Damaoshan highway tunnel: a case study", NDT E Int., Vol.59, pp.68-76. https://doi.org/10.1016/j.ndteint.2013.05.004
  21. Yee, K.S. (1966), "Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media", IEEE Trans. Antennas Propag, Vol.14, No.3, pp.302-307. https://doi.org/10.1109/TAP.1966.1138693
  22. Zan, Y., Li, Z., Su, G., and Zhang X. (2016), "An Innovative Vehicle-mounted GPR Technique for Fast and Efficient Monitoring of Tunnel Lining Structural Conditions", Case Study Nondestruct, Test Eval., Vol.6, pp.63-69. https://doi.org/10.1016/j.csndt.2016.10.001
  23. Zhang, F., Xie, X., and Huang H. (2010), "Application of Ground Penetrating Radar in Grouting Evaluation for Shield Tunnel Construction", Tunn Undergr Space Technol., Vol.25, pp.99-107. https://doi.org/10.1016/j.tust.2009.09.006