DOI QR코드

DOI QR Code

MAGNETIC CURVES IN ℍ3 × ℝ

  • Received : 2021.03.03
  • Accepted : 2021.06.18
  • Published : 2021.11.01

Abstract

In this paper we study magnetic trajectories on ℍ3 × ℝ with respect to the strictly almost Kähler structure. We find three types of magnetic curves which correspond to the almost complex structure compatible to the product metric on ℍ3 × ℝ.

Keywords

Acknowledgement

The authors would like to thank the referee for her/his careful reading of the manuscript and suggestions for improving this article. The authors would also like to acknowledge professor Shimpei Kobayashi and Marian Ioan Munteanu for their useful suggestions. The second named author is partially supported by JSPS KAKENHI Grant Number 19K03461.

References

  1. S. L. Druta-Romaniuc, J. Inoguchi, M. I. Munteanu, and A. I. Nistor, Magnetic curves in Sasakian manifolds, J. Nonlinear Math. Phys. 22 (2015), no. 3, 428-447. https://doi.org/10.1080/14029251.2015.1079426
  2. S. L. Druta-Romaniuc, J. Inoguchi, M. I. Munteanu, and A. I. Nistor, Magnetic curves in cosymplectic manifolds, Rep. Math. Phys. 78 (2016), no. 1, 33-48. https://doi.org/10.1016/S0034-4877(16)30048-9
  3. Z. Erjavec, On Killing magnetic curves in SL(2, ℝ) geometry, Rep. Math. Phys. 84 (2019), no. 3, 333-350. https://doi.org/10.1016/S0034-4877(19)30096-5
  4. Z. Erjavec and J. Inoguchi, Magnetic curves in Sol3, J. Nonlinear Math. Phys. 25 (2018), no. 2, 198-210. https://doi.org/10.1080/14029251.2018.1452670
  5. Z. Erjavec and J. Inoguchi, Killing magnetic curves in Sol space, Math. Phys. Anal. Geom. 21 (2018), no. 2, Paper No. 15, 15 pp. https://doi.org/10.1007/s11040-018-9272-6
  6. Z. Erjavec and J. Inoguchi, On magnetic curves in almost cosymplectic Sol space, Results Math. 75 (2020), no. 3, Paper No. 113, 16 pp. https://doi.org/10.1007/s00025-020-01235-y
  7. R. Filipkiewicz, Four dimensional geometries, Ph. D. Thesis, University of Warwick, 1983.
  8. J. Inoguchi and M. I. Munteanu, Magnetic curves in the real special linear group, Adv. Theor. Math. Phys. 23 (2019), no. 8, 2161-2205. https://doi.org/10.4310/ATMP.2019.v23.n8.a6
  9. D. A. Kalinin, Trajectories of charged particles in Kahler magnetic fields, Rep. Math. Phys. 39 (1997), no. 3, 299-309. https://doi.org/10.1016/S0034-4877(97)89750-9
  10. M. I. Munteanu and A. I. Nistor, The classification of Killing magnetic curves in $\mathbb{S}^2{\times}\mathbb{R}$, J. Geom. Phys. 62 (2012), no. 2, 170-182. https://doi.org/10.1016/j.geomphys.2011.10.002
  11. A. I. Nistor, Motion of charged particles in a Killing magnetic field in ℍ2 × ℝ, Rend. Semin. Mat. Univ. Politec. Torino 73 (2015), no. 1, 161-170.
  12. T. Oguro and K. Sekigawa, Almost Kahler structures on the Riemannian product of a 3-dimensional hyperbolic space and a real line, Tsukuba J. Math. 20 (1996), no. 1, 151-161. https://doi.org/10.21099/tkbjm/1496162985
  13. C. T. C. Wall, Geometries and geometric structures in real dimension 4 and complex dimension 2, in Geometry and topology (College Park, Md., 1983/84), 268-292, Lecture Notes in Math., 1167, Springer, Berlin, 1985. https://doi.org/10.1007/BFb0075230
  14. C. T. C. Wall, Geometric structures on compact complex analytic surfaces, Topology 25 (1986), no. 2, 119-153. https://doi.org/10.1016/0040-9383(86)90035-2