DOI QR코드

DOI QR Code

SOME RESULTS CONCERNED WITH HANKEL DETERMINANT FOR 𝓝 (𝜶) CLASS

  • Received : 2020.08.20
  • Accepted : 2021.02.19
  • Published : 2021.10.31

Abstract

In this paper, we give some results an upper bound of Hankel determinant of H2(1) for the classes of 𝓝 (𝜶). We get a sharp upper bound for H2(1) = c3 - c22 for 𝓝 (𝜶) by adding z1, z2, …, zn zeros of f(z) which are different than zero. Moreover, in a class of analytic functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained. Finally, the sharpness of the inequalities obtained in the presented theorems are proved.

Keywords

References

  1. T. Akyel and B. N. Ornek, Some remarks on Schwarz lemma at the boundary, Filomat 31 (2017), no. 13, 4139-4151. https://doi.org/10.2298/fil1713139a
  2. T. Aliyev Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577. https://doi.org/10.1080/17476933.2012.718338
  3. H. P. Boas, Julius and Julia: mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785. https://doi.org/10.4169/000298910X521643
  4. V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. (N.Y.) 122 (2004), no. 6, 3623-3629; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286 (2002), Anal. Teor. Chisel i Teor. Funkts. 18, 74-84, 228-229. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
  5. M. Fekete and G. Szego, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math. Soc. 8 (1933), no. 2, 85-89. https://doi.org/10.1112/jlms/s1-8.2.85
  6. G. M. Goluzin, Geometrical theory of functions of a complex variable (Russian), Second edition. Edited by V. I. Smirnov. With a supplement by N. A. Lebedev, G. V. Kuzmina and Ju. E. Alenicyn, Izdat. "Nauka", Moscow, 1966.
  7. M. Mateljevic, Rigidity of holomorphic mappings & Schwarz and Jack lemma, In press. http://doi.org/10.13140/RG.2.2.34140.90249.
  8. M. Mateljevic, N. Mutavdcz, and B. N. Ornek, Note on some classes of holomorphic functions related to Jack's and Schwarz's lemma, ResearchGate. http://doi.org/10.13140/RG.2.2.25744.15369
  9. P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski's lemma, J. Class. Anal. 12 (2018), no. 2, 93-97. https://doi.org/10.7153/jca-2018-12-08
  10. P. R. Mercer, An improved Schwarz lemma at the boundary, Open Math. 16 (2018), no. 1, 1140-1144. https://doi.org/10.1515/math-2018-0096
  11. J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346. https://doi.org/10.2307/1997533
  12. M. Obradovic and S. Ponnusamy, Radius properties for subclasses of univalent functions, Analysis (Munich) 25 (2005), no. 3, 183-188. https://doi.org/10.1524/anly.2005.25.3.183
  13. M. Obradovic and S. Ponnusamy, On the class U, In Proceedings of the 21st Annual Conference of the Jammu Mathematical Society and a National Seminar on Analysis and its Application, pp. 11-26, 2011.
  14. B. N. Ornek, Some remarks of the Caratheodory's inequality on the right half plane, Commun. Korean Math. Soc. 35 (2020), no. 1, 201-215. https://doi.org/10.4134/CKMS.c180469
  15. B. N. Ornek and T. Duzenli, Boundary analysis for the derivative of driving point impedance functions, IEEE Transactions on Circuits and Systems II: Express Briefs 65 (2018), 1149-1153. https://doi.org/10.1109/tcsii.2018.2809539
  16. B. N. Ornek and T. Duzenli, Schwarz lemma for driving point impedance functions and its circuit applications, Intern. J. Circuit Theory Appl. 47 (2019), 813-824. https://doi.org/10.1002/cta.2616
  17. R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
  18. Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108-112. https://doi.org/10.1112/S002557930000807X
  19. Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992. https://doi.org/10.1007/978-3-662-02770-7
  20. J. Sokol and D. K. Thomas, The second Hankel determinant for alpha-convex functions, Lith. Math. J. 58 (2018), no. 2, 212-218. https://doi.org/10.1007/s10986-018-9397-0
  21. A. Vasudevarao and H. Yanagihara, On the growth of analytic functions in the class $\mathcal{U}(λ), Comput. Methods Funct. Theory 13 (2013), no. 4, 613-634. https://doi.org/10.1007/s40315-013-0045-8