DOI QR코드

DOI QR Code

A CAMERON-STORVICK THEOREM ON C2a,b[0, T ] WITH APPLICATIONS

  • Choi, Jae Gil (School of General Education Dankook University) ;
  • Skoug, David (Department of Mathematics University of Nebraska-Lincoln)
  • Received : 2020.08.10
  • Accepted : 2021.01.20
  • Published : 2021.10.31

Abstract

The purpose of this paper is to establish a very general Cameron-Storvick theorem involving the generalized analytic Feynman integral of functionals on the product function space C2a,b[0, T]. The function space Ca,b[0, T] can be induced by the generalized Brownian motion process associated with continuous functions a and b. To do this we first introduce the class ${\mathcal{F}}^{a,b}_{A_1,A_2}$ of functionals on C2a,b[0, T] which is a generalization of the Kallianpur and Bromley Fresnel class ${\mathcal{F}}_{A_1,A_2}$. We then proceed to establish a Cameron-Storvick theorem on the product function space C2a,b[0, T]. Finally we use our Cameron-Storvick theorem to obtain several meaningful results and examples.

Keywords

Acknowledgement

The authors would like to express their gratitude to the editor and the referees for their valuable comments and suggestions which have improved the original paper.

References

  1. R. H. Cameron, The first variation of an indefinite Wiener integral, Proc. Amer. Math. Soc. 2 (1951), 914-924. https://doi.org/10.2307/2031708
  2. R. H. Cameron and D. A. Storvick, Feynman integral of variations of functionals, in Gaussian random fields (Nagoya, 1990), 144-157, Ser. Probab. Statist., 1, World Sci. Publ., River Edge, NJ, 1991.
  3. S. J. Chang and J. G. Choi, Effect of drift of the generalized Brownian motion process: an example for the analytic Feynman integral, Arch. Math. (Basel) 106 (2016), no. 6, 591-600. https://doi.org/10.1007/s00013-016-0899-x
  4. S. J. Chang, J. G. Choi, and A. Y. Ko, Multiple generalized analytic Fourier-Feynman transform via rotation of Gaussian paths on function space, Banach J. Math. Anal. 9 (2015), no. 4, 58-80. https://doi.org/10.15352/bjma/09-4-4
  5. S. J. Chang, J. G. Choi, and D. Skoug, Integration by parts formulas involving generalized Fourier-Feynman transforms on function space, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2925-2948. https://doi.org/10.1090/S0002-9947-03-03256-2
  6. S. J. Chang, J. G. Choi, and D. Skoug, Evaluation formulas for conditional function space integrals. I, Stoch. Anal. Appl. 25 (2007), no. 1, 141-168. https://doi.org/10.1080/07362990601052185
  7. S. J. Chang, J. G. Choi, and D. Skoug, Evaluation formulas for conditional function space integrals. II, PanAmer. Math. J. 20 (2010), no. 3, 1-25.
  8. S. J. Chang, J. G. Choi, and D. Skoug, Generalized Fourier-Feynman transforms, convolution products, and first variations on function space, Rocky Mountain J. Math. 40 (2010), no. 3, 761-788. https://doi.org/10.1216/RMJ-2010-40-3-761
  9. S. J. Chang, J. G. Choi, and D. Skoug, Translation theorems for the Fourier-Feynman transform on the product function space C2a,b[0, T], Banach J. Math. Anal. 13 (2019), no. 1, 192-216. https://doi.org/10.1215/17358787-2018-0022
  10. S. J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and a first variation on function space, Integral Transforms Spec. Funct. 14 (2003), no. 5, 375-393. https://doi.org/10.1080/1065246031000074425
  11. K. S. Chang, T. S. Song, and I. Yoo, Analytic Fourier-Feynman transform and first variation on abstract Wiener space, J. Korean Math. Soc. 38 (2001), no. 2, 485-501.
  12. J. G. Choi and S. J. Chang, Generalized Fourier-Feynman transform and sequential transforms on function space, J. Korean Math. Soc. 49 (2012), no. 5, 1065-1082. https://doi.org/10.4134/JKMS.2012.49.5.1065
  13. J. G. Choi, D. Skoug, and S. J. Chang, Generalized analytic Fourier-Feynman transform of functionals in a Banach algebra $\mathcal{F}^{a,b}_{A_1,A_2}$, J. Funct. Spaces Appl. 2013 (2013), Art. ID 954098, 12 pp. https://doi.org/10.1155/2013/954098
  14. D. L. Cohn, Measure Theory, second edition, Birkhauser Advanced Texts: Basler Lehrbucher., Birkhauser/Springer, New York, 2013. https://doi.org/10.1007/978-1-4614-6956-8
  15. M. D. Donsker, On function space integrals, in Analysis in Function Space, 17-30, M.I.T. Press, Cambridge, MA, 1964.
  16. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, emended edition, Dover Publications, Inc., Mineola, NY, 2010.
  17. G. B. Folland, Real Analysis, second edition, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999.
  18. G. W. Johnson, The equivalence of two approaches to the Feynman integral, J. Math. Phys. 23 (1982), no. 11, 2090-2096. https://doi.org/10.1063/1.525250
  19. G. W. Johnson and M. L. Lapidus, The Feynman integral and Feynman's operational calculus, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.
  20. G. W. Johnson and D. L. Skoug, An Lp analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), no. 1, 103-127. http://projecteuclid.org/euclid.mmj/1029002166
  21. G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continuation in several complex variables, in Stochastic Analysis and Applications, 217-267, Adv. Probab. Related Topics, 7, Dekker, New York, 1984.
  22. H.-H. Kuo, Integration by parts for abstract Wiener measures, Duke Math. J. 41 (1974), 373-379. http://projecteuclid.org/euclid.dmj/1077310406 https://doi.org/10.1215/S0012-7094-74-04142-8
  23. H.-H. Kuo and Y.-J. Lee, Integration by parts formula and the Stein lemma on abstract Wiener space, Commun. Stoch. Anal. 5 (2011), no. 2, 405-418. https://doi.org/10.31390/cosa.5.2.10
  24. C. Park, D. Skoug, and D. Storvick, Fourier-Feynman transforms and the first variation, Rend. Circ. Mat. Palermo (2) 47 (1998), no. 2, 277-292. https://doi.org/10.1007/BF02844368
  25. I. Pierce and D. Skoug, Integration formulas for functionals on the function space Ca,b[0, T] involving Paley-Wiener-Zygmund stochastic integrals, PanAmer. Math. J. 18 (2008), no. 4, 101-112.
  26. W. Rudin, Real and Complex Analysis, third edition, McGraw-Hill Book Co., New York, 1987.
  27. J. Yeh, Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments, Illinois J. Math. 15 (1971), 37-46. http://projecteuclid.org/euclid.ijm/1256052816 https://doi.org/10.1215/ijm/1256052816
  28. J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New York, 1973.