DOI QR코드

DOI QR Code

고출력 슁글드 모듈 제작을 위한 결정질 실리콘 태양전지 분할 셀의 전기적 특성

Electrical Characteristics of Crystalline Silicon Solar Cell Strip for High Power Photovoltaic Modules

  • 노은빈 (성균관대학교 전자전기컴퓨터공학과) ;
  • 배재성 (성균관대학교 전자전기컴퓨터공학과) ;
  • 김정훈 ((주)탑선 기술연구소) ;
  • 유종현 ((주)제너셈 R&D 센터) ;
  • 이재형 (성균관대학교 전자전기컴퓨터공학과)
  • Noh, Eun Bin (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Bae, Jae Sung (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Jung Hoon (Research Institute, Topsun Co.) ;
  • You, Jong Hyun (R&D Center, Genesem Inc.) ;
  • Lee, Jaehyeong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 투고 : 2021.06.25
  • 심사 : 2021.07.26
  • 발행 : 2021.11.01

초록

As the demand for new and renewable energy increases due to the depletion of fossil fuels, solar power generation, a core energy source for new and renewable energy, requires research on solar modules for high output power generation. In this paper, the electrical characteristics of solar cell strip at the edge and in the center of single-crystal silicon having a semi-square shape were analyzed. The cell strip located in the center showed the efficiency increase by 0.26% compared to the cell strip at the edge of the solar cell. A shingled photovoltaic module was manufactured for each cell strip. As a result, the output power of the module using the cell strip located in the center was higher by 0.992%.

키워드

과제정보

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No.20203030010200).

참고문헌

  1. A. Sfetsos, Renewable Energy, 27, 163 (2002). [DOI: https://doi.org/10.1016/S0960-1481(01)00193-8]
  2. T. Meyer and J. Luther, Energy Convers. Manage., 45, 2639 (2004). [DOI: https://doi.org/10.1016/j.enconman.2003.12.023]
  3. M. T. Zarmai, N. N. Ekere, C. F. Oduoza, and E. H. Amalu, Appl. Energy, 154, 173 (2015). [DOI: https://doi.org/10.1016/j.apenergy.2015.04.120]
  4. A. W. Blakers, J. Appl. Phys., 71, 5237 (1992). [DOI: https://doi.org/10.1063/1.350580]
  5. P. P. Altermatt, J. Comput. Electron., 10, 314 (2011). [DOI: https://doi.org/10.1007/s10825-011-0367-6]
  6. J. Zhao, A. Wang, E. Abbaspour-Sani, F. Yun, and M. A. Green, IEEE Electron Device Lett., 18, 48 (1997). [DOI: https://doi.org/10.1109/55.553040]
  7. N. Wohrle, E. Lohmuller, M. Mittag, A. Moldovan, P. Baliozian, T. Fellmeth, K. Krauss, A. Kraft, and R. Preu, Photovoltaics International (Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany, 2017) p. 48 [https://www.pv-tech.org/technicalpapers/solar-cell-demand-for-bifacial-and-singulatedcell-module-architectures/]
  8. M. Mittag, T. Zech, M. Wiese, D. Blasi, M. Ebert, and H. Wirth, 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) (IEEE, Washington, USA, 2017) p. 1531. [DOI: https://doi.org/10.1109/PVSC.2017.8366260]
  9. A. Fell, J. Schon, M. Muller, N. Wohrle, M. C. Schubert, and S. W. Glunz, IEEE J. Photovoltaics, 8, 428 (2018). [DOI: https://doi.org/10.1109/JPHOTOV.2017.2787020]
  10. W. J. Oh, J. S. Park, S. H. Hwang, S. H. Lee, C. H. Jeong, and J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 290 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.5.290]
  11. B. Qi and J. Wang, Phys. Chem. Chem. Phys., 15, 8972 (2013). [DOI: https://doi.org/10.1039/C3CP51383A]