DOI QR코드

DOI QR Code

Bio-Piezoelectric Generator with Silk Fibroin Films Prepared by Dip-Coating Method

딥코팅에 의한 실크 피브로인막으로 제조한 바이오 압전발전기

  • Kim, Min-Soo (School of Nano & Materials Engineering, Kyungpook National University) ;
  • Park, Sang-Shik (School of Nano & Materials Engineering, Kyungpook National University)
  • 김민수 (경북대학교 나노소재공학부) ;
  • 박상식 (경북대학교 나노소재공학부)
  • Received : 2021.08.23
  • Accepted : 2021.08.30
  • Published : 2021.11.01

Abstract

Piezoelectric generators use direct piezoelectric effects that convert mechanical energy into electrical energy. Many studies were attempted to fabricate piezoelectric generators using piezoelectrics such as ZnO, PZT, PVDF. However, these various inorganic/organic piezoelectric materials are not suitable for bio-implantable devices due to problems such as brittleness, toxicity, bio-incompatibility, bio-degradation. Thus, in this paper, piezoelectric generators were prepared using a silk fibroin film which is bio-compatible by dip-coating method. The silk fibroin films are a mixed state of silk I and silk II having stable β-sheet type structures and shows the d33 value of 8~10 pC/N. There was a difference in output voltages according to the thickness. The silk fibroin generators, coated 10 times and 20 times, revealed the power density of 16.07 μW/cm2 and 35.31 μW/cm2 using pushing tester, respectively. The silk fibroin generators are sensitive to various pressure levels, which may arise from body motions such as finger tapping, foot pressing, wrist shaking, etc. The silk fibroin piezoelectric generators with bio-compatibility shows the applicability as a low-power implantable piezoelectric generator, healthcare monitoring service, and biotherapy devices.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(2020R1I1A3072902). 또한 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1A5A8033165).

References

  1. V. Sencadas, C. Garvey, S. Mudie, J.J.K. Kirkensgaard, G. Gouadec, and S. Hauser, Nano Energy, 66, 104106 (2019). [DOI: https://doi.org/10.1016/j.nanoen.2019.104106]
  2. T. Li, M. Qu, C. Carlos, L. Gu, F. Jin, T. Yuan, X. Wu, J. Xiao, T. Wang, W. Dong, X. Wang, and Z. Q. Feng, Adv. Mater., 33, 2006093 (2021). [DOI: https://doi.org/10.1002/adma.202006093]
  3. C. Thevenot, D. Rouxel, S. Sukumaran, S. Rouabah, B. Vincent, S. Chatbouri, and T. B. Zineb, J. Appl. Polym. Sci., 138, 50420 (2021). [DOI: https://doi.org/10.1002/app.50420]
  4. C. Lagomarsini, C. Jean-Mistral, G. Lombardi, and A. Sylvestre, Smart Mater. Struct., 28, 035003 (2019). [DOI: https://doi.org/10.1088/1361-665x/aaf34e]
  5. H. Gullapalli, V.S.M. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, and P. M. Ajayan, Small, 6, 1641 (2010). [DOI: https://doi.org/10.1002/smll.201000254]
  6. M. Y. Choi, D. Choi, M. J. Jin, I. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, Adv. Mater., 21, 2185 (2009). [DOI: https://doi.org/10.1002/adma.200803605]
  7. K. I. Park, J. H. Son, G. T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang, and K. J. Lee, Adv. Mater., 26, 2514 (2014). [DOI: https://doi.org/10.1002/adma.201305659]
  8. L. Jin, S. Ma, W. Deng, C. Yan, T. Yang, X. Chu, G. Tian, D. Xiong, J. Lu, and W. Yang, Nano Energy, 50, 632 (2018). [DOI: https://doi.org/10.1016/j.nanoen.2018.05.068]
  9. M. Akerfeldt, A. Lund, and P. Walkenstrom, Text. Res. J., 85, 1789 (2015). [DOI: https://doi.org/10.1177/0040517515578333]
  10. D. Denning, J. I. Kilpatrick, E. Fukada, N. Zhang, S. Habelitz, A. Fertala, M. D. Gilchrist, Y. Zhang, S.A.M. Tofail, and B. J. Rodriguez, ACS Biomater. Sci. Eng., 3, 929 (2017). [DOI: https://doi.org/10.1021/acsbiomaterials.7b00183]
  11. L. Csoka, I. C. Hoeger, O. J. Rojas, I. Peszlen, J. J. Pawlak, and P. N. Peralta, ACS Macro Lett., 1, 867 (2012). [DOI: https://doi.org/10.1021/mz300234a]
  12. B. Y. Lee, J. Zhang, C. Zueger, W. J. Chung, S. Y. Yoo, E. Wang, J. Meyer, R. Ramesh, and S. W. Lee, Nat. Nanotechnol., 7, 351 (2012). [DOI: https://doi.org/10.1038/nnano.2012.69]
  13. S. K. Ghosh and D. Mandal, Nano Energy, 28, 356 (2016). [DOI: https://doi.org/10.1016/j.nanoen.2016.08.030]
  14. S. K. Karan, S. Maiti, O. Kwon, S. Paria, A. Maitra, S. K. Si, Y. Kim, J. K. Kim, and B. B. Khatua, Nano Energy, 49, 655 (2018). [DOI: https://doi.org/10.1016/j.nanoen.2018.05.014]
  15. S. K. Karan, S. Maiti, S. Paria, A. Maitra, S. K. Si, J. K. Kim, and B. B. Khatua, Mater. Today Energy, 9, 114 (2018). [DOI: https://doi.org/10.1016/j.mtener.2018.05.006]
  16. C. Vepari and D. L. Kaplan, Prog. Polym. Sci., 32, 991 (2007), [DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.013]
  17. P. Aramwit, S. Kanokpanont, T. Nakpheng, and T. Srichana, Inter. J. Mol. Sci., 11, 2200 (2010). [DOI: https://doi.org/10.3390/ijms11052200]
  18. Y. Qi, H. Wang, K. Wei, Y. Yang, R. Y. Zheng, I. S. Kim, and K. Q. Zhang, Int. J. Mol. Sci., 18, 237 (2017). [DOI: https://doi.org/10.3390/ijms18030237]
  19. H. J. Kim, J. H. Kim, K. W. Jun, J. H. Kim, W. C. Seung, O. H. Kwon, J. Y. Park, S. W. Kim, and I. K. Oh, Adv. Energy Mater., 6, 1502329 (2016). [DOI: https://doi.org/10.1002/aenm.201502329]
  20. Y. Guo, X. S. Zhang, Y. Wang, W. Gong, Q. Zhang, H. Wang, and J. Brugger, Nano Energy, 48, 152 (2018). [DOI: https://doi.org/10.1016/j.nanoen.2018.03.033]
  21. X. S. Zhang, J. Brugger, and B. Kim, Nano Energy, 20, 37 (2016). [DOI: https://doi.org/10.1016/j.nanoen.2015.11.036]
  22. J. Joseph, S. G. Singh, and S.R.K. Vanjari, IEEE Electron Device Lett., 39, 749 (2018). [DOI: https://doi.org/10.1109/LED.2018.2816646]
  23. W. I. Abdel-Fattah, N. Atwa, and G. W. Ali, Prog. Biomater., 4, 77 (2015). [DOI: https://doi.org/10.1007/s40204-015-0039-x]
  24. H. Y. Wang and Y. Q. Zhang, Soft Matter, 9, 138 (2013). [DOI: https://doi.org/10.1039/c2sm26945g]
  25. P. Monti, P. Taddei, G. Freddi, T. Asakura, and M. Tsukada, J. Raman Spectrosc., 32, 103 (2001). [DOI: https://doi.org/10.1002/jrs.675]
  26. E. Fukada, Biorheology, 32, 593 (1995). [DOI: https://doi.org/10.1016/0006-355X(95)00039-C]
  27. T. Yucel, P. Cebe, and D. L. Kaplan, Adv. Funct. Mater., 21, 779 (2011). [DOI: https://doi.org/10.1002/adfm.201002077]
  28. E. Praveen, S. Murugan, and K. Jayakumar, RSC Adv., 7, 35490 (2017). [DOI: https://doi.org/10.1039/c7ra04752e]
  29. S. Rajala, T. Siponkoski, E. Sarlin, M. Mettanen, M. Vuoriluoto, A. Pammo, J. Juuti, O. J. Rojas, S. Franssila, and S. Tuukkanen, ACS Appl. Mater. Interfaces, 8, 15607 (2016). [DOI: https://doi.org/10.1021/acsami.6b03597]