DOI QR코드

DOI QR Code

New Drug Development of Myotonic Muscular Dystrophy

  • Kang, Min Sung (Department of Neurology, Pusan National University Yangsan Hospital) ;
  • Shin Jin-Hong (Department of Neurology, Pusan National University Yangsan Hospital)
  • 투고 : 2021.07.06
  • 심사 : 2021.07.27
  • 발행 : 2021.10.31

초록

Myotonic muscular dystrophy is a disease characterized by progressive muscle weakness with myotonia and multiorgan involvement. Two subtypes have been recognized; each subtype is caused by nucleotide repeat expansion. So far, there has been no cure for myotonic muscular dystrophy. In this article, we introduce ongoing clinical trials for new drugs to modify disease course by correcting genetic derangement or its downstream in myotonic dystrophy type 1.

키워드

참고문헌

  1. Turner C, Hilton-Jones D., Myotonic dystrophy: diagnosis, management and new therapies. Curr Opin Neurol 2014;27:599-606. https://doi.org/10.1097/WCO.0000000000000128
  2. Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001;293:864-7. https://doi.org/10.1126/science.1062125
  3. Martorell L, Monckton DG, Sanchez A, Lopez De Munain A, Baiget M. Frequency and stability of the myotonic dystrophy type 1 premutation. Neurology 2001;56:328-35. https://doi.org/10.1212/WNL.56.3.328-a
  4. Thornton C. Myotonic dystrophy. Neurol Clin 2014;32:705-19. https://doi.org/10.1016/j.ncl.2014.04.011
  5. Morales F, Couto JM, Higham CF, Hogg G, Cuenca P, Braida C, et al. Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum Mol Genet 2012;21:3558-67. https://doi.org/10.1093/hmg/dds185
  6. Yuan Y, Compton SA, Sobczak K, Stenberg MG, Thornton CA, Griffith JD, et al. Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res 2007; 35:5474-86. https://doi.org/10.1093/nar/gkm601
  7. Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, et al. Failure of MBNL1-dependent postnatal splicing transitions in myotonic dystrophy. Hum Mol Genet 2006;15:2087-97. https://doi.org/10.1093/hmg/ddl132
  8. Lueck JD, Mankodi A, Swanson MS, Thornton CA, Dirksen RT. Muscle chloride channel dysfunction in two mouse models of myotonic dystrophy. J Gen Physiol 2007;129:79-94. https://doi.org/10.1085/jgp.200609635
  9. Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 2001;29:40-7. https://doi.org/10.1038/ng704
  10. Kuyumcu-Martinez NM, Wang GS, Cooper TA. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKCmediated hyperphosphorylation. Mol Cell 2007;28:68-78. https://doi.org/10.1016/j.molcel.2007.07.027
  11. Mahadevan, M.S. Myotonic dystrophy: is a narrow focus obscuring the rest of the field? Curr Opin Neurol 2012;25:609-13. https://doi.org/10.1097/WCO.0b013e328357b0d9
  12. Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 2018;14:9-21. https://doi.org/10.1038/nrneurol.2017.148
  13. Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 2012;488:111-5. https://doi.org/10.1038/nature11362
  14. U.S. National Library of Medicine. A Safety and Tolerability Study of Multiple Doses of ISIS-DMPKRx in Adults with Myotonic Dystrophy Type 1 [Internet]. Bethesda, MD, ClinicalTrials.gov (updated on 2018). https://clinicaltrials.gov/ct2/show/NCT02312011 (cited on 2021 Jul 06).
  15. Godfrey C, Holland A, Gunnoo S, Ching S, Johnson R, Irwin C, et al. A novel enhanced delivery oligonucleotide (EDO) therapeutic demonstrates considerable potential in treating myotonic dystrophy type 1. Muscular dystrophy association 2021;DM1:124.
  16. Avidity biosciences, AOC 1001 for myotonic dystrophy type 1, [Internet], La Jolla, CA, Avidity biosciences (updated on 2020), http://www.aviditybiosciences.com/programs (cited on 2021 Jul 06).
  17. Cerro-Herreros E, Gonzalez-Martinez I, Moreno-Cervera N, Overby S, Perez-Alonso M, Llamusi B, et al. Therapeutic Potential of AntagomiR-23b for Treating Myotonic Dystrophy. Mol Ther Nucleic Acids 2020;21:837-49. https://doi.org/10.1016/j.omtn.2020.07.021
  18. Zhang W, Wang Y, Dong S, Choudhury R, Jin Y, Wang Z. Treatment of type 1 myotonic dystrophy by engineering site-specific RNA endonucleases that target (CUG)(n) repeats. Mol Ther 2014; 22:312-20. https://doi.org/10.1038/mt.2013.251
  19. Lo Scrudato M, Poulard K, Sourd C, Tome S, Klein AF, Corre G, et al. Genome Editing of Expanded CTG Repeats within the Human DMPK Gene Reduces Nuclear RNA Foci in the Muscle of DM1 Mice. Mol Ther 2019;27:1372-88. https://doi.org/10.1016/j.ymthe.2019.05.021
  20. Rzuczek SG, Colgan LA, Nakai Y, Cameron MD, Furling D, Yasuda R, et al. Precise small-molecule recognition of a toxic CUG RNA repeat expansion. Nat Chem Biol 2017;13:188-93. https://doi.org/10.1038/nchembio.2251
  21. Taylor K, Mochizuki H, Sobczak K, Takahashi MP. Oral administration of erythromycin decreases RNA toxicity in myotonic dystrophy. Ann Clin Transl Neurol 2016;3:42-54. https://doi.org/10.1002/acn3.271
  22. Jenquin JR, Yang H, Huigens RW 3rd, Nakamori M, Berglund JA. Combination Treatment of Erythromycin and Furamidine Provides Additive and Synergistic Rescue of Mis-Splicing in Myotonic Dystrophy Type 1 Models. ACS Pharmacol Transl Sci 2019; 2:247-63. https://doi.org/10.1021/acsptsci.9b00020
  23. Angelbello AJ, Rzuczek SG, Mckee KK, Chen JL, Olafson H, Cameron MD, et al. Precise small-molecule cleavage of an r(CUG) repeat expansion in a myotonic dystrophy mouse model. Proc Natl Acad Sci U S A 2019;116:7799-804. https://doi.org/10.1073/pnas.1901484116
  24. Laustriat D, Gide J, Barrault L, Chautard E, Benoit C, Auboeuf D, et al. In Vitro and In Vivo modulation of alternative splicing by the biguanide metformin. Mol Ther Nucleic Acids 2015;4:e262. https://doi.org/10.1038/mtna.2015.35
  25. Bassez G, Audureau E, Hogrel JY, Arrouasse R, Baghdoyan S, Bhugaloo H, et al. Improved mobility with metformin in patients with myotonic dystrophy type 1: a randomized controlled trial. Brain 2018;141:2855-65. https://doi.org/10.1093/brain/awy231
  26. Horrigan J, Gomes TB, Snape M, Nikolenko N, McMorn A, Evans S, et al. A Phase 2 Study of AMO-02 (Tideglusib) in Congenital and Childhood-Onset Myotonic Dystrophy Type 1 (DM1). Pediatr Neurol 2020;112:84-93. https://doi.org/10.1016/j.pediatrneurol.2020.08.001
  27. Bargiela A, Sabater-Arcis M, Espinosa-Espinosa J, Zulaica M, Lopez de Munain A, Artero R. Increased Muscleblind levels by chloroquine treatment improve myotonic dystrophy type 1 phenotypes in in vitro and in vivo models. Proc Natl Acad Sci U S A 2019;116:25203-13. https://doi.org/10.1073/pnas.1820297116
  28. Heatwole C, Luebbe E, Rosero S, Eichinger K, Martens W, Hilbert J, et al. Mexiletine in Myotonic Dystrophy Type 1: A Randomized, Double-Blind, Placebo-Controlled Trial. Neurology 2021;96:e228-40. https://doi.org/10.1212/WNL.0000000000011002
  29. Montagnese F, Stahl K, Wenninger S, Schoser B. A role for cannabinoids in the treatment of myotonia? Report of compassionate use in a small cohort of patients. J Neurol 2020;267:415-21. https://doi.org/10.1007/s00415-019-09593-6
  30. U.S. National Library of Medicine. Safety and Efficacy of Pitolisant on Excessive Daytime Sleepiness and Other Non-Muscular Symptoms in Patients with Myotonic Dystrophy Type 1 [Internet]. Bethesda, MD, ClinicalTrials.gov (updated on 2021). https://clinicaltrials.gov/ct2/show/NCT04886518 (cited on 2021 Jul 06).