DOI QR코드

DOI QR Code

Effects of Night Temperature at Veraison on Berry Skin Coloration of 'Kyoho' Grapevines

포도 '거봉' 품종의 변색기 야간 온도 처리가 과피 착색에 미치는 영향

  • Ryu, Suhyun (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Cho, Jung-Gun (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Jeong, Jae Hoon (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Seul-Ki (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Han, Jeom Hwa (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 류수현 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 조정건 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 정재훈 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 이슬기 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 한점화 (농촌진흥청 국립원예특작과학원 원예작물부 과수과)
  • Received : 2021.07.15
  • Accepted : 2021.09.28
  • Published : 2021.10.31

Abstract

We analyzed berry skin coloration, anthocyanin accumulation, and plant hormone contents in berry skins to determine the effect of night temperature at veraison on berry skin coloration in 'Kyoho' grapevines (Vitis labruscana L.). Vines were grown under 21, 24, and 27℃ at night for 20 days at veraison, from 40 to 60 days after full bloom (DAFB). Berry skin coloration of 'Kyoho' grapes was more suppressed in 27℃ treated vines, followed by that in 24℃ treated vines, than that in 21℃ treated vines. Cluster and berry weight and soluble solids content was lower in 24 and 27℃ treated vines than in 21℃ treated vines. Anthocyanin started to accumulate from 60 DAFB in berry skin of 21℃ treated vines, and malvidin and total anthocyanin content increased until 100 DAFB. The total and most of the individual anthocyanins decreased in 24 and 27℃ treated vines; however, peonidin did not decrease in 24℃ treated vines compared to that in 21℃ treated vines. Abscisic acid (ABA) peaked at veraison in berry skins of 21℃ treated vines and decreased thereafter until 100 DAFB. The increase in ABA content was inhibited in berry skins of 24 and 27℃ treated vines. Gibberellin (GA) content in berry skins decreased rapidly at veraison, with the decrease being slower under 27℃ than under 21℃. ABA/GA in berry skins of 21℃ treated vines peaked at 60 DAFB and decreased thereafter until 100 DAFB. However, ABA/GA decreased in berry skins of 24 and 27℃ treated vines, with reduced anthocyanin accumulation. Therefore, high night temperature (above 24℃) at veraison suppressed the berry skin coloration of 'Kyoho' grapes with changes in anthocyanin contents and composition due to the decrease in ABA/GA ratio and fruit soluble solids contents.

변색기의 수준별 야간 고온이 포도 '거봉'의 과피색 발현에 미치는 영향을 분석하기 위해 시기별 과피색 변화, 과피 내 안토시아닌 및 식물호르몬 ABA와 GA 함량을 분석하였다. 변색기 20일 동안의 야간 24, 27℃ 처리에 의해 '거봉' 포도의 과피색 불량이 나타났으며, 야간 온도가 높을수록 과피색 발현이 더욱 억제되었다. 수확기 과실 품질을 분석한 결과, 야간 21℃ 처리구에 비해 24, 27℃ 처리구의 과방중, 과립중, 당도가 감소하였다. 야간 21℃ 처리구의 과피에서 만개 후 50일부터 안토시아닌이 축적되기 시작했고, 개별 안토시아닌 중 Mal과 함께 총 안토시아닌 함량이 수확기까지 지속적으로 증가하였다. 야간 21℃ 처리구를 기준으로 과피의 총 안토시아닌이 야간 24, 27℃ 처리에 의해 감소하였으며, 개별 안토시아닌 중에서는 Peo를 제외한 나머지 안토시아닌의 감소 경향이 뚜렷하였다. 식물호르몬 ABA는 야간 21℃ 처리구의 과피에서 변색기에 최대값을 보이고 다시 수확기까지 감소하였는데, 이러한 ABA 함량의 증가는 야간 24, 27℃ 처리에 의해 감소하는 경향이었다. GA는 변색기 과피에서 급격하게 감소하여 수확기까지 낮은 함량으로 유지되었는데, 야간 기온이 낮을수록 빠르게 감소하였다. 야간 21℃ 처리구 과피에서 ABA/GA 값은 만개 후 60일에 최대값을 보이고 다시 수확기까지 감소하였지만, 이 증가 양상이 야간 고온에 의해 감소하며 과피 안토시아닌 축적과 동일한 경향을 보이며 변화하였다. 따라서 변색기 야간의 24℃ 이상의 고온은 '거봉' 포도의 과피색 발현을 억제하며, 이는 식물호르몬 ABA, GA의 비율 변화, 과실 당도 감소로 인한 총 안토시아닌 함량 및 조성 변화 때문으로 판단되었다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구사업(세부과제번호: PJ01504101)의 지원에 의해 이루어진 것임.

References

  1. Alferez F., D.U. de Carvalho, and D. Boakye 2021, Interplay between abscisic acid and gibberellins, as related to ethylene and sugars, in regulating maturation of non-climacteric fruit. Int J Mol Sci 22:669. doi:10.3390/ijms22020669
  2. Azuma A., H. Yakushiji, Y. Koshita, and S. Kobayashi 2012, Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067-1080. doi:10.1007/s00425-012-1650-x
  3. Castellarin S.D., and G.D. Gaspero 2007, Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol 7:46. doi:10.1186/1471-2229-7-46
  4. De Rosas I., M.T. Ponce, E. Malovini, L. Deis, B. Cavagnaro, and P. Cavagnaro 2017, Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions. Plant Sci 258:137-145. doi:10.1016/j.plantsci.2017.01.015
  5. Fortes A.M., R.T. Teixeira, and P. Agudelo-Romero 2015, Complex interplay of hormonal signals during grape berry ripening. Molecules 20:9326-9343. doi:10.3390/molecules20059326
  6. Ikeda T., N. Suzuki, M. Nakayama, and Y, Kawakami 2011, The effects of high temperature and water stress on fruit growth and anthocyanin content of pot-grown strawberry (Fragaria × ananassa Duch. cv. 'Sachinoka') plants. Environ Control Biol 49:209-215. doi:10.2525/ecb.49.209
  7. Jeong S.T., N. Goto-Ymamamoto, S. Kobayashi, and M. Esaka 2004, Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167:247-252. doi:10.1016/j.plantsci.2004.03.021
  8. Kliewer W.M., and R.E. Torres 1972, Effect of controlled day and night temperatures on grape coloration. Am J Enol Vitic 23:71-77.
  9. Koshita Y., N. Mitani, A. Azuma, and H. Yakushiji 2015, Effects of short-term temperature treatment to clusters on anthocyanin and abscisic acid content in the peel of 'Aki Queen' grape. Vitis 54:169-173.
  10. Koshita Y., T. Asakura, H. Fukuda, and Y. Tsuchida 2007, Nighttime temperature treatment of fruit clusters of 'Aki Queen' grapes during maturation and its effect on the skin color and abscisic acid content. Vitis 46:208-209. doi:10.5073/vitis.2007.46.208-209
  11. Lee K., H.J. Baek, S. Park, H.S. Kang, and C.H. Cho 2012, Future projection of changes in extreme temperatures using high resolution regional climate change scenario in the Republic of Korea. Kor Geogr Soc 47:208-225. (in Korean)
  12. Li W.F., J. Mao, S.J. Yang, Z.G. Guo, Z.H. Ma, M.M. Dawuda, C.W. Zuo, M.Y. Chu, and B.H. Chen 2018, Anthocyanin accumulation correlates with hormones in the fruit skin of 'Red Delicious' and its four generation bud sport mutants. BMC Plant Biol 18:363. doi:10.1186/s12870-018-1595-8
  13. Li Y., R. Ma, Z. Xu, J. Wang, T. Chen, F. Chen, and Z. Wang 2013, Identification and quantification of anthocyanins in Kyoho grape juice-making pomace, Cabernet Sauvignon grape winemaking pomace and their fresh skin. J Sci Food Agric 93:1404-1411. doi:10.1002/jsfa.5907
  14. Liang Z., B. Wu, P. Fan, C. Yang, W. Duan, X. Zheng, C. Liu, and S. Li 2008, Anthocyanin composition and content in grape berry skin in Vitis germplasm. Food Chem 111:837-844. doi:10.1016/j.foodchem.2008.04.069
  15. Lin-Wang K., D. Micheletti, J. Palmer, R. Volz, L. Lozano, R. Espley, R.P. Hellens, D. Chagne, D.D. Rowan, M. Troggio, I. Iglesias, and A.C. Allan 2011, High temperature reduces apple fruit color via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34:1176-1190. doi:10.1111/j.1365-3040.2011.02316.x
  16. Liu X., P. Hu, M. Huang, Y. Tang, Y. Li, L. Li, and X. Hou 2016, The NF-YC-RGL2 module integrates GA and ABA signaling to regulate seed germination in Arabidopsis. Nat Commun 7:1-14. doi:10.1038/ncomms12768
  17. Loreti E., G. Povero, G. Novi, C. Solfanelli, A. Alpi, and P. Perata 2008, Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin bio-synthetic genes in Arabidopsis. New Phytol 179:1004-1016. doi:10.1111/j.1469-8137.2008.02511.x
  18. Martinez G.A., A.R. Chaves, and M.C. Anon 1996, Effect of exogenous application of gibberellic acid on color change and phenylalanine ammonia-lyase, chlorophyllase, and peroxidase activities during ripening of strawberry fruit (Fragaria × ananassa Duch.). J Plant Growth Regul 15:139-146. doi:10.1007/BF00198929
  19. Mori K., N.G. Yamamoto, M. Kitayama, and K. Hashizume 2007a, Effect of high temperature on anthocyanin composition and transcription of flavonoid hydroxylase genes in 'Pinot Noir' grapes (Vitis vinifera). J Hortic Sci Biotechnol 82:199-206. doi:10.1080/14620316.2007.11512220
  20. Mori K., N.G. Yamamoto, M. Kitayama, and K. Hashizume 2007b, Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935-1945. doi:10.1093/jxb/erm055
  21. Mori K., S. Sugaya, and H. Gemma 2004, Regulatory mechanism of anthocyanin biosynthesis in 'Kyoho' grape berries grown under different temperature conditions. Environ Control Biol 42:21-30. doi:10.2525/ecb1963.42.21
  22. Mori K., H. Saito, N. Goto-Yamamoto, M. Kitayama, S. Kobayashi, S. Sugaya, H. Gemma, and K. Hashizume 2005a, Effects of abscisic acid treatment and night temperatures on anthocyanin composition in Pinot Noir grapes. Vitis 44:161-165.
  23. Mori K., S. Sugaya, and H. Gemma 2005b, Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci Hortic 105:319-330. doi:10.1016/j.scienta.2005.01.032
  24. Oh H.D., D.J. Yu, S.W. Chung, S. Chea, and H.L. Lee 2018, Abscisic acid stimulates anthocyanin accumulation in 'Jersey' highbush blueberry fruits during ripening. Food Chem 244:403-407. doi:10.1016/j.foodchem.2017.10.051
  25. Park S.J., J.G. Kim, S.M. Jung, J.H. Noh, Y.Y. Hur, M.S. Ryou, and H.C. Lee 2010, Relationship between berry set density and fruit quality in 'Kyoho' grape. Kor J Hort Sci Technol 28:954-958. (in Korean)
  26. Pastore C., S.D. Santo, S. Zenoni, N. Movahed, G. Allegro, G. Valentini, I. Filippetti, and G.B. Tornielli 2017, Whole plant temperature manipulation affects flavonoid metabolism and the transcriptome of grapevine berries. Front Plant Sci 8:929. doi:10.3389/fpls.2017.00929
  27. Pilati S., G. Bagagli, P. Sonego, M. Moretto, D. Brazzale, G. Castorina, L. Simoni, C. Tonelli, G. Guella, K. Engelen, et al 2017, Abscisic acid is a major regulator of grape berry ripening onset: new insights into ABA signaling network. Front Plant Sci 8:1093. doi:10.3389/fpls.2017.01093
  28. Rienth M., L. Torregrosa, N. Luchaire, R. Chatbanyong, D. Lecourieux, M.T. Kelly, and C. Romieu 2014, Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (Vitis vinifera) fruit. BMC Plant Biol 14:108. doi:10.1186/1471-2229-14-108
  29. Ryu S., J.H. Han, H.H. Han, J.G. Cho, J.H. Jeong, S.K. Lee, and H.J. Lee 2020, High temperature at veraison inhibits anthocyanin biosynthesis in berry skins during ripening in 'Kyoho' grapevines. Plant Physiol Biochem 157:219-228. doi:10.1016/j.plaphy.2020.10.024
  30. Ryu S., J.H. Han, H.H. Han, J.H. Jeong, J.G. Cho, and G.R. Do 2018, Changes of fruit quality and anthocyanin composition of 'Kyoho' and 'Heukboseok' grape berry skins under high temperature at veraison. Protected Hort Plant Fac 27:213-221. (in Korean) doi:10.12791/KSBEC.2018.27.3.213
  31. Shen X., K. Zhao, L. Liu, K. Zhang, H. Yuan, X. Liao, Q. Wang, X. Guo, F. Li, and T. Li 2014, A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Plant Cell Physiol 55:862-880. doi:10.1093/pcp/pcu013
  32. Shinomiya R., H. Fujishima, K. Muramoto, and M. Shiraishi 2015, Impact of temperature and sunlight on the skin coloration of the 'Kyoho' table grape. Sci Hortic 193:77-83. doi:10.1016/j.scienta.2015.06.042
  33. Symons G.M., C. Davies, Y. Shavrukov, I.B. Dry, J.B. Reid, and M.R. Thomas 2006, Grapes on steroids: brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150-158. doi:10.1104/pp.105.070706
  34. Tarara J.M., J. Lee, S.E. Spayd, and C.F. Scagel 2008, Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am J Enol Vitic 59:235-247. https://doi.org/10.5344/ajev.2008.59.3.235
  35. Wheeler S., B. Loveys, C. Ford, and C. Davies 2009, The relationship between the expression of abscisic acid bio-synthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust J Grape Wine Res 15:195-204. doi:10.1111/j.1755-0238.2008.00045.x
  36. Yamane T., and K. Shibayama 2006, Effects of changes in the sensitivity to temperature on skin coloration in 'Aki Queen' grape berries. J Japan Soc Hort Sci 75:458-462. doi:10.2503/jjshs.75.458
  37. Yamane T., S.T. Jeong, N. Goto-Yamamoto, Y. Koshita, and S. Kobayashi 2006, Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am J Enol Vitic 57:54-59. https://doi.org/10.5344/ajev.2006.57.1.54