DOI QR코드

DOI QR Code

고온기 반밀폐형온실 냉방이 파프리카 생육과 광합성 특성에 미치는 영향

Effect of Cooling in a Semi-closed Greenhouse at High Temperature on the Growth and Photosynthesis Characteristics in Paprika

  • 김은지 (목포대학교 대학원 원예학과) ;
  • 박경섭 (목포대학교 자연과학대학 원예과학과) ;
  • 구희웅 (목포대학교 대학원 원예학과) ;
  • 박가은 (목포대학교 자연과학대학 원예과학과) ;
  • 명동주 (농업회사법인 주식회사 써니너스) ;
  • 전용환 (농업회사법인 주식회사 써니너스) ;
  • 나해영 (목포대학교 자연과학대학 원예과학과)
  • Kim, Eun Ji (Department of Horticultural Science, Graduate School of Mokpo National University) ;
  • Park, Kyoung Sub (Department of Horticultural Science, Mokpo National University) ;
  • Goo, Hei Woong (Department of Horticultural Science, Graduate School of Mokpo National University) ;
  • Park, Ga Eun (Department of Horticultural Science, Mokpo National University) ;
  • Myung, Dong Ju (SUNINUS Farming Corporation) ;
  • Jeon, Yong Hwan (SUNINUS Farming Corporation) ;
  • Na, Haeyeong (Department of Horticultural Science, Mokpo National University)
  • 투고 : 2021.09.16
  • 심사 : 2021.10.09
  • 발행 : 2021.10.31

초록

본 연구는 냉방이 가능한 반밀폐형온실과 일반 플라스틱온실에서의 정식 후 고온 스트레스가 파프리카에 미치는 영향 구명을 위해 수행하였다. 지열과 팬앤패드를 활용하여 냉방이 가능한 반밀폐형온실의 파프리카는 냉방이 되지 않는 3중 플라스틱 하우스의 파프리카보다 유의적으로 높은 광합성 속도를 보여 주었다. 플라스틱 하우스의 파프리카가 고온 스트레스에 의해 광합성 속도가 느려지는 것을 제시하고 있다. 초장은 반밀폐형온실이 13cm 더 높게 증가하였으며, 엽면적은 이식 후 2주차까지 생장 속도가 비슷하였으나 3주차 경과 시 반밀폐형온실이 플라스틱온실보다 47% 높은 차이를 보였다. 착과 수는 반밀폐형온실 10.6개/주, 플라스틱온실 4.6개/주가 착과하여 플라스틱온실 대비 반밀폐형온실이 130% 높게착과하였다. 과중 또한 반밀폐형온실과 플라스틱온실이 각각 566.7g/plant와 387g/plant으로 46% 차이를 나타냈다. 이상의 결과로 냉방이 가능한 반밀폐형온실에서 파프리카를 재배할 경우 일반 플라스틱온실보다 광합성과 생육이 양호하였음을 확인할 수 있었다. 따라서, 반밀폐형온실의 냉방 효율을 위한 요소기술을 일반 플리스틱온실에 적용하여 여름철 고온기를 극복한다면 수확량 및 품질 향상을 통한 농가소득 증대가 가능해질 것으로 기대된다.

In this study, experiments were conducted to investigate the effects of high- temperature stress on paprika in a semi-closed greenhouse where cooling is available and a normal plastic greenhouse. Paprika grown in a semi-closed greenhouse in which geothermal cooling is provided showed a significantly higher speed of photosynthesis than paprika grown in a 3-layer plastic greenhouse in which there is no cooling system. It suggests that the photosynthesis speed of paprika in a plastic house decreases owing to high temperature stress. Plant height increased by 13cm more in the semi-closed greenhouse, and the size of leaf showed similar growth speed until the 2nd week after transplanting, however, after 3 weeks, the semi-closed greenhouse showed a big difference by 47% compared with the plastic greenhouse. In terms of the fruit count, the semi-closed greenhouse had 10.6 fruits/plant and the plastic greenhouse had 4.6 fruits/plant, indicating that the semi-closed greenhouse had a higher number of fruits by 130% than the plastic greenhouse. The fruit weight also presented a difference between the semi-closed greenhouse and the plastic greenhouse by 46%, which is 566.7g/plant and 387g/plant, respectively. According to the above mentioned results, it was validated that when paprika is cultivated in a semi-closed greenhouse where a cooling system is applied, photosynthesis and growth were better than in the normal plastic greenhouse. Thus, if the hot summer season is overcome by applying the elemental technologies for the cooling system to the normal plastic greenhouse, farm income may increase through improvement in the yield and quality.

키워드

과제정보

본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(421041-03).

참고문헌

  1. Bae H.J. 2018, Sweet pepper fruit growth analysis according to fruit set season. M.Sc. Thnesis. Chonnam university. Natl. Korea.
  2. Bot G.P.A. 1992, Greenhouse growing: outlook 2000, Acta Hortic 304:43-47. doi:10.17660/ActaHortic.1992.304.3
  3. Cho I.H., W.M. Lee, K.B. Kwan,, Y.H. Woo, and K.H. Lee 2009, Stable production technique of paprika (Capsicum annuum L.) by hydrogen peroxide treatment at summer. J Bio-Env Con 18:297-301. (in Korean)
  4. Chung D.Y., S.S. Park, and J.H. Peck 2009, Development of passive cooling system for communication cabinet by latent heat material. Soc Air-con Refri Engin Kor pp 1389-1390. (in Korean)
  5. Dorais M. 2003, The use of supplemental lighting for vegetable crop production: light intensity, crop response, nutrition, crop management, cultural practices. Canadian Greenhouse Conference. doi:10.1093/jxb/erh245
  6. Heo Y., E.G. Park, B.G. Son, Y.W. Choi, Y.J. Lee, Y.H. Park, J.M. Suh, J.H. Cho, C.O. Hong, S.G. Lee, and J.S. Kang 2013, The Influence of abnormally high temperature on growth and yield of hot pepper (Capsicum annuum L.). J Agri Life Sci 47:9-15. (in Korean) https://doi.org/10.14397/jals.2013.47.6.9
  7. Heuvelink E., and H. Challa 1989, Dynamic optimization of artificial lighting in greenhouses. Acta Hortic 2016:401-402. doi:10.17660/ActaHortic.1989.260.26
  8. Heuvelink E., L.F.M. Marcelis, and O. Korner 2004, How to reduce yield fluctuations in sweet pepper. Acta Hortic 633:349-355. doi:10.17660/ActaHortic.2004.633.42
  9. IPCC 2007, Climate Chanage 2007. The Physical Science Basis. Working group I contribution to the fourth assessment report of the intergovernmental panel on climate change, Summary for Policymakers, Cambridge University Press, Cambridge, UK.
  10. Lee J.S., H.I. Lee, and Y.H. Kim 2012, Seedling quality and early yield after transplanting of paprika nursed under light-emitting diodes, Fluorescent Lamps and Natural Light. J Bio-Env Con 21:220-227. (in Korean)
  11. Kim P.G., and E. J. Lee 2001, Ecophysiology of Photosynthesis 1: Effects of Light Intensity and Intercellular CO2 Pressure on Photosynthesis. Kor J Agri For Meteol 3:126-133. (in Korean) doi:10.7235/hort.2013.12130
  12. Kim S.E., M.Y. Lee, and Y.S. Kim 2013, Characterization of Photosynthetic Rates by Tomato Leaf Position. Kor J Hort Sci Technol 31:146-152. (in Korean)
  13. Kratsch H.A., and Wise, R.R. 2000, The ultrastructure of chilling stress. Plant Cell Environ 23:337-350. doi:10.1046/j.1365-3040.2000.00560.x
  14. Lee C.K., J.W. Kim, J.Y. Shon, W.H. Yang, Y.H. Yoon, K.J. Choi, and K.S. Kim 2012, Impacts of Climate Change on Rice Production and Adaptation Method in Korea as Evaluated by Simulation Study. Kor J Agri For Meteol 14:207-221. (in Korean) doi:10.5532/KJAFM.2012.14.4.207
  15. Lee I.K., Y. Chae, S.Y. Kim, C.K. An, H,C, Han, Y.P. Hong, Y.A. Shin, S.C. Lee, and S.J. Jeon 2013, Sweet pepper-Agricultural Technology Guide 124. Rural Development Administration, Jeonju, Korea. (in Korean)
  16. Marcelis LFM., E. Heuvelink, L.R. Baan Hofman-Eijer, J. Den Bakker, and L.B. Cue 2004, Flower and fruit abortion in sweet pepper in relation to source and sink strength. J Exp Bot 55:2261-2268. doi:10.1093/jxb/erh245
  17. NIMR 2007, The application of regional climate changescenario for the national climate change report (III). NIMR Report, pp 599.
  18. Oh S., K.H. Moon, I.C. Son, E.Y. Song, Y.E. Moon, and S.C. Koh 2014, Growth, photosysthesis and chlorophyll fluorescence of chinese cabbage in response to high temperature. Kor J Hort Sci Techol 32:318-329. (in Korean) doi:10.7235/hort.2014.13174
  19. Qian T., J.A. Dieleman, A. Elings, A. De Gelder, and L.F.M. Marcelis 2011, Comparison of Climate and production in closed, Semi-Closed and Open Greenhouses. Acta Hortic 927:59-66. doi:10.17660/ActaHortic.2011.893.88
  20. Reddy K.R., H.F. Hodges, and J.M. Mckinion 1993, A temperature model for cotton phenology. Biotronics 22:47-59.
  21. Shim K.M., Y.S. Kim, M.P. Jung, S.C. Kim, S.H. Min, and K.H. So 2013, Agro-Climatic Zonal Characteristics of the Frequency of Abnormal Air Temperature Occurrence in South Korea. Climate Change Research 4:189-199. (in Korean)
  22. Son I.C., K.H. Moon, E.Y. Song, S.J. Oh, H..H. Seo, Y.E. Moon, and J.Y. Yang 2015, Effects of Differentiated Temperature Based on Growing Season Temperature on Growth and Physiological Response in Chinese Cabbage 'Chunkwang'. Korean J Agric For Meteorol 17:254-260. (in Korean) doi:10.5532/KJAFM.2015.17.3.254
  23. Wong S.C., I. R. Cowan, and G. D. Farquhar 1979, Stomatal conductance correlates with photosynthetic capacity. Nature 282:424-426. doi:10.1038/282424a0