DOI QR코드

DOI QR Code

Comparison of Growth Characteristics and Physiological Activity of Two Centella asiatica Cultivars in Greenhouse Soil Culture

시설 내 토경재배에서 병풀(Centella asiatica) 두 품종의 생장특성 및 생리활성 비교

  • Oh, Sewon (Division of Animal, Horticultural and Food Sciences, Chungbuk National University) ;
  • Park, Sujeong (Department of Horticultural Science, Gyeongsang National University) ;
  • Lee, Seongho (Department of Horticultural Science, Gyeongsang National University) ;
  • Park, Yeonju (Department of Horticultural Science, Gyeongsang National University) ;
  • Jang, Keum-Il (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Yu, Kwang-Won (Department of Foold and Nutrition, Korea University of Transportation) ;
  • Kim, Daeil (Department of Horticultural Science, Chungbuk National University) ;
  • Shin, Hyunsuk (Department of Horticultural Science, Gyeongsang National University)
  • 오세원 (충북대학교 축산.원예.식품공학부) ;
  • 박수정 (경상국립대학교 원예과학과) ;
  • 이성호 (경상국립대학교 원예과학과) ;
  • 박연주 (경상국립대학교 원예과학과) ;
  • 장금일 (충북대학교 식품생명공학과) ;
  • 유광원 (한국교통대학교 식품영양학과) ;
  • 김대일 (충북대학교 원예과학과) ;
  • 신현석 (경상국립대학교 원예과학과)
  • Received : 2021.08.31
  • Accepted : 2021.10.15
  • Published : 2021.10.31

Abstract

The study was investigated to compare growth characteristics, the antioxidant activity, and the triterpenoid content of two Centella asiatica cultivars ('Giant Tiger Care' and 'Good Tiger Care'). At 41 days after transplanting, lengths of leaf and petiole were significantly longer in 'Good Tiger Care' than in 'Giant Tiger Care'. However, the growth characteristics (leaf area, petiole thickness, petiole length, and weight) were greater in 'Giant Tiger Care' than in 'Good Tiger Care' at 104 days after transplanting (harvest time). Antioxidant activity and total phenol content in four extracts (WE, water extract; HWE, hot water extract; 50E, 50% EtOH extract; 70E, 70% EtOH extract) of the two cultivars were high in 70E of 'Giant Tiger Care'. As a result of the triterpenoids analysis, the major triterpenoids of the two cultivars were identified as madecassoside and asiaticoside. The total triterpenoid content was high in 50E and 70E of 'Giant Tiger Care' and 'Good Tiger Care', respectively but the total triterpenoid content was highest in Good Tiger Care'. However, at the 104 days after planting, the yield of 'Giant Tiger Care' was three times higher than that of 'Good Tiger Care'. In addition, the total triterpenoid content that can be produced in the same cultivation area (3.3m2) was 2.459mg in 50E of 'Giant Tiger Care', which was ~2.2times higher than that of 70E of 'Good Tiger Care' (1.103 mg). Thus, it is considered economical to cultivate 'Giant Tiger Care' which has the highest antioxidant activity and high total triterpenoid production per cultivation area.

본 연구는 병풀(Centella asiatica) 두 품종('자이언트 타이거 케어', '굿병풀')의 생장 특성과 추출용매에 따른 항산화 활성 및 Triterpenoid 함량을 조사하기 위해 수행되었다. '자이언트 타이거 케어'와 '굿병풀'의 정식 후 생장 특성은 정식 41일 후 엽과 엽병의 길이 생장에서 '굿병풀'이 유의적으로 높았다. 하지만 이후 수확기(정식 104일 후)까지 생장속도는 유사하였다. 정식 후 104일에 수확한 '자이언트 타이거 케어'의 식물체 크기와 관련된 생장(엽면적, 엽병두께, 엽병 길이, 생체중)이 '굿병풀'보다 유의적으로 높았다. 냉수, 열수, 50% 에탄올, 70% 에탄올 추출물의 자유라디컬 소거능과 환원능으로 평가된 항산화 활성과 총 페놀 함량은 두 품종에서 모두 70% 에탄올 추출물에서 높았다. 추출 용매별 Triterpenoid 함량을 분석한 결과, 두 품종의 주요 Triterpenoid는 Madecasoside와 Asiaticoside로 확인되었다. 품종별 총 Triterpenoids 함량은 '자이언트 타이거 케어'의 50% 에탄올 추출물과 '굿병풀'의 70% 에탄올 추출물에서 가장 높았으며, '굿병풀'이 '자이언트 타이거 케어'보다 높았다. 하지만 정식 104일 후 수확량은 '자이언트 타이거 케어'가 '굿병풀'보다 3배 많아, 동일한 재배 면적(3.3m2) 에서 생산 가능한 총 Triterpenoids 함량은 '자이언트 타이거 케어'가 2.459mg으로 '굿병풀'(1.103mg) 보다 약 2.2배 높았다. 따라서 항산화 활성이 가장 높고 단위면적당 총 Triterpenoids 생산량이 높은 '자이언트 타이거 케어'를 재배하는 것이 경제적일 것으로 생각된다.

Keywords

Acknowledgement

본 논문은 2021년 농촌진흥청 연구사업(세부과제번호: PJ015285052021)의 지원에 의해 이루어진 것임.

References

  1. Baek Y.W. 1997, Micropropagation of Centella asiatica (L.) Urban by in vitro cultures and production of triterpene glycosides. PhD Dissertation, Chonnam National Univ., Gwangju, Korea, pp 13-15.
  2. Belwal T., H.C. Andola, M.S. Atanassova, B. Joshi, R. Suyal, S. Thakur, A. Bisht, A. Jantwal, O.D. Bhatt, and R.S. Rawal 2019, Chapter 3.22-Gotu Kola (Centella asiatica). In SM Nabavi, AS Silva, eds, Nonvitamin and nonmineral and nutritional supplements, Acadamic Press, pp 265-275.
  3. Bonte F., M. Dumas, C. Chaudagne, and A. Meybeck 1994, Influence of asiatic acid, madecassic acid, and asiaticoside on human collagen I synthesis. Plant Med 60:133-135. doi:10.1055/s-2006-959434
  4. Brinkhaus B., M. Lindner, D. Schuppan, and E.G. Hahn 2000, Review article: chemical, pharmacological and clonical profile of the East Asian medical plant Centella asiatica. Phytomedicine 7:427-448. doi:10.1016/S0944-7113(00)80065-3
  5. Cho C.W., D.S. Choi, M.H. Cardone, C.W. Kim, A.J. Sinskey, and C. Rha 2006, Glioblastoma cell death induced by asiatic acid. Cell Biol Toxicol 22:393-408. doi:10.1007/s10565-006-0104-2
  6. Gbolahan B.W.j., A.I. Abiola, J. Kamaldin, M.A. Ahmad, and M.S. Atanassova 2016, Accession in Centella asiatica; current understanding and future knowledge. J Pure Appl Microbiol 10:2485-2494. doi:10.22207/JPAM.10.4.02
  7. Gohil K.J., J.A. Patel, and A.K. Gajjar 2010, Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J Pharm Sci 72:546-556. doi:10.4103/0250-474X.78519
  8. Goo Y.M., Y.S. Kil, S.M. Sin, D.Y. Lee, W.M. Jeong, K. Ko, K. Yang, Y.H. Kim, and S.W. Lee 2018, Analysis of antibacterial, anti-inflammatory, and skin-whitening effect of Centella asiatica (L.) Urban. J Plant Biotechnol 45:117-124. (in Korean) doi:10.5010/JPB.2018.45.2.117
  9. Hausen B.M. 1993, Centella asiatica (Indian pennywort), an effective therapeutic but a week sensitizer. Contact Derm 29:175-179. doi:10.1111/j.1600-0536.1993.tb03532.x
  10. Hokmalipour S., and M.H. Darbandi 2011, Effects of nitrogen fertilizer on chlorophyll cotent and other leaf indicate in three cultivars of maize. World Appl Sci J 15:1780-1785.
  11. Hong J.J., H.G. Seol, J.Y. Oh, E.H. Jeong, and Y.H. Chang 2021, Effective component contents and antioxidative activities of unripe apple by extraction methods. Korean J Food Nutr 34:174-180. (in Korean) doi:10.9799/ksfan.2021.34.2.174
  12. Kim W.J., J. Kim, B. Veriansyah, J.D. Kim, Y.W.j Lee, S.G. Oh, and R.R. Tjandrawinata 2009, Extraction of bioactive components from Centella asiatica using subcritical water. J Supercrit Fluids 48:211-216. doi:10.1016/j.supflu.2008.11.007
  13. Kiselova Y., D. Ivanova, T. Chervenkov, D. Gerova, B. Galunska, and T. Yankova 2006, Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from Bulgarian herbs. Phytotherapy Res 20:961-965. doi:10.1002/ptr.1985
  14. Kwon M.C., J.G. Han, J.H. Ha, S.H. Oh, L. Jin, H.S. Jeong, G.P. Choi, B. Hwang, and H.Y. Lee 2008, Immuno-regulatory effect on Centella asiatica L. Urban extraction solvent associated with ultrasonification process. Korean J Medicinal Crop Sci 16:294-300. (in Korean)
  15. Lee S.H., S.H. Lee, S.K. Kim, E.Y. Hong, S.H. Chun, I.C. Son, and D.I. Kim 2014, Effect of harvest time on the several phenolic compounds and fruit quality of grape cultivars. Korean J Plant Res 27:119-124. (in Korean) doi:10.7732/kjpr.2014.27.2.119
  16. Liu M., Y. Dai, X. Yao, Y. Li, Y. Luo, Y. Xia, and Z. Gong 2008, Anti-rheumatoid arthritic effect of madecassoside on type II collagen-induced arthritis in mice. Int Immunopharmacol 8:1561-1566. doi:10.1016/j.intimp.2008.06.011
  17. Madeira A.C., A. Ferreira, A. de Varennes, and M.I. Vieira 2003, SPAD meter versus tristimulus colorimeter to estimate chlorophyll content and leaf color in sweet papper. Commun Soil Sci Plant Anal 34:2461-2470. doi:10.1081/CSS-120024779
  18. Marinova D., F. Ribarova, and M. Atanassova 2005, Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J Univ Chem Technol Metall 40:255-260.
  19. Mook-Jung I, J.E. Shin, S.H. Yun, K. Hur, J.Y. Koh, H.K. Park, S.S. Jew, and M.W. Jung 1999, Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J Neurosic Res 58:417-425. doi:10.102/(SICI)1097-4547(19991101)58.3<417::AID-JNR7>3.0.CO;2-G
  20. Ong E.S., J.S.H. Cheong, and D. Goh 2006, Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials. J Chromatogr A 1112:92-102. doi:10.1016/j.chroma.2005.12.052
  21. Prasad A., S.S. Dhawan, A.K. Mathur, O. Prakash, M.M. Gupta, R.K. Verma, R.K. Lal, and A. Mathur 2014, Morphological, chemical and molecular characterization of Centella asiatica germplasms for commercial cultivation in the Indo-Gangetic plains. Nat Product Commun 9:779-784. doi:10.1177/1934578X1400900612
  22. Puttarak P., and P. Panichayupakaranant 2013, A new method for preparing pentacyclic triterpene rich. Natural Product Research 27:684-686. doi:10.1080/14786419.2012.686912
  23. Ryu B.S., H.E. Choi, W.S. Choi, N.H. Lee, and U.K. Choi 2017, Antioxidant activities of extracts from different parts of the pine tree. Korean J Food Nutr 30:1133-1139. (in Korean) doi:10.9799/ksfan.2017.30.6.1133
  24. Shin H.Y., H. Kim, E.J. Jeong, J.E. Kim, K.H. Lee, Y.J. Bae, and K.W. Yu 2020, Bioactive compounds, anti-oxidant activities, and anti-inflammatory activites of solvent extracts from Centella asiatica cultured in Chungju. Korean J Food Nutr 33:692-701. (in Korean) doi:10.9799/ksfan.2020.33.6.692
  25. Shukla A., A.M. Rasik, and B.N. Dhawan 1999, Asiaticoside-induced elevation of antioxidant levels in healing wounds. Phytother Res 13:50-54. doi:10.1002/(SICI)1099-1573(199902)13:1<50::AID-PTR368>3.0.CO;2-V
  26. Song F.L., R.Y. Gan, Y. Zhang, Q. Xiao, L. Kuang, and H.B. Li 2010, Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. Int J Mol Sci 11:2362-2372. doi:10.3390/ijms11062362
  27. Stankovic M.S. 2011, Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac J Sci 33:63-72.
  28. Suh J.T., K.D. Kim, H.B. Sohn, S.J. Kim, S.Y. Hong, and Y.H. Kim 2020, Comparative study of antioxidant activities at different cultivation area and harvest date of the Gomchwi 'Sammany' variety. Korean J Plant Res 33:245-254. (in Korean) doi:10.7732/kjpr.2020.33.4.245
  29. Tommasini S., D. Raneri, R. Ficarra, M.L. Calabro, R. Stancanelli, P. Ficarra 2004, Improvement in solubility and dissolution rate of flavonoids by complexation with β-cyclodextrin. J Pharm Biomed Anal 35:379-387. doi:10.1016/S0731-7085(03)00647-2
  30. Valadabadi A.S., and A.H. Faranhani 2010, Effects of planning density and pattern on physiological growth indices in maize (Zea mays L.) under nitrogenous fertilizer application. J Agric Ext Rural Dev 2:40-47. doi:10.5897/JAERD.9000035
  31. Yun K.J., J.Y. Kim, J.B. Kim, K.W. Lee, S.Y. Jeong, H.J. Park, H.J. Jung, Y.W. Cho, K. Yun, and K.T. Lee 2008, Inhibition of LPS-induced NO and PGE 2 production by asiatic acid via NF-ĸB inactivation in RAW 264.7 macrophages: possible involvement of the IKK and MAPK pathways. Int Immunopharmacol 8:431-441. doi:10.1016/j.intimp.2007.11.003
  32. Zainol M.K., A. Abd-Hamid, S. Yusof, and R. Muse 2003, Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chem 81:575-581. doi:10.1016/S0308-8146(02)00498-3
  33. Zhao Y.L., H. Wei, H.H. Zheng, Z. Guo, Y.S. Wei, D.H. Zheng, and J. Zhang 2010, Enhancing water-solubility of poorly soluble drug, asiatic acid with hydrozypropyl-B-cyclodextrin. Dig J Nanomater Biostruct 5:419-425.
  34. Zheng C.J. and L.P. Qin 2007, Chemical components of Centella asiatica and their bioactivities. J Chinese Integr Med 5:348-351. doi:10.3736/jcim20070324
  35. Zhimin Q, C. Xinxin, H. Jingbo, L. Qinmei, Y. Qinlei, Z. Junfeng, and D. Xuming 2017, Asiatic acid enhances Nrf2 signaling to protent HepG2cells fromoxidative damage through Akt and ERK activation. Biomed Pharmacother 88:252-259. doi:10.1016/j.biopha.2017.01.067