References
- Abdelkefi, A., Najar, F., Nayfeh, A.H. and Ayed, S.B. (2011), "An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations", Smart Mater. Struct., 20(11), 115007. https://doi.org/10.1088/0964-1726/20/11/115007
- Abdelkefi, A., Nayfeh, A.H. and Hajj, M.R. (2012), "Modeling and analysis of piezoaeroelastic energy harvesters", Nonlin. Dyn., 67(2), 925-939. https://doi.org/10.1007/s11071-011-0035-1.
- Amini, Y., Heshmati, M., Fatehi, P. and Habibi, S.E. (2017), "Piezoelectric energy harvesting from vibrations of a beam subjected to multi-moving loads", Appl. Math. Model., 49, 1-16. https://doi.org/10.1016/j.apm.2017.04.043.
- Beer, F.P., Johnston Jr, E.R., Dewolf, J.T. and Mazurek, D.F. (2010), Mechanics of Materials, Sixth Edit Edition.
- Brufau-Penella, J. and Puig-Vidal, M. (2009), "Piezoelectric energy harvesting improvement with complex conjugate impedance matching", J. Intel. Mater. Syst. Struct., 20(5), 597-608. https://doi.org/10.1177/1045389X08096051.
- Chen, X.R., Yang, T.Q., Wang, W. and Yao, X. (2012), "Vibration energy harvesting with a clamped piezoelectric circular diaphragm", Ceram. Int., 38, S271-S274. https://doi.org/10.1016/j.ceramint.2011.04.099.
- Deepesh, U., Li, X. and Yang, Y. (2020), "Analytical and experimental investigation of stepped piezoelectric energy harvester", Smart Struct. Syst., 26(6), 681-692. https://doi.org/10.12989/sss.2020.26.6.681.
- Dow, A.B.A., Schmid, U. and Kherani, N.P. (2011), "Analysis and modeling of a piezoelectric energy harvester stimulated by β-emitting radioisotopes", Smart Mater. Struct., 20(11), 115019. https://doi.org/10.1088/0964-1726/20/11/115019
- Dutoit, N.E., Wardle, B.L. and Kim, S.G. (2005), "Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters", Integ. Ferroelec., 71, (1), 121-160. https://doi.org/10.1080/10584580590964574.
- Erturk, A. and Inman, D.J. (2008), "Issues in mathematical modeling of piezoelectric energy harvesters", Smart Mater. Struct., 17(6), 065016. https://doi.org/10.1088/0964-1726/17/6/065016
- Erturk, A. and Inman, D.J. (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater. Struct., 18(1), 025009. https://doi.org/10.1088/0964-1726/18/2/025009
- Firouzi, B. and Zamanian, M. (2019), "The effect of capillary and intermolecular forces on instability of the electrostatically actuated microbeam with T-shaped paddle in the presence of fringing field", Appl. Math. Model., 71, 243-268. https://doi.org/10.1016/j.apm.2019.02.016.
- Franco, V.R. and Varoto, P.S. (2017), "Parameter uncertainties in the design and optimization of cantilever piezoelectric energy harvesters", Mech. Syst. Signal Pr., 93, 593-609. https://doi.org/10.1016/j.ymssp.2017.02.030.
- Ghodsi, M., Ziaiefar, H., Mohammadzaheri, M., Omar, F. K. and Bahadur, I. (2019), "Dynamic analysis and performance optimization of permendur cantilevered energy harvester", Smart Struct. Syst., 23(5), 421-428. http://doi.org/10.12989/sss.2019.23.5.421.
- Guan, Q.C., Ju, B., Xu, J.W., Liu, Y.B. and Feng, Z.H. (2013), "Improved strain distribution of cantilever piezoelectric energy harvesting devices using H-shaped proof masses", J. Intel. Mater. Syst. Struct., 24(9), 1059-1066. https://doi.org/10.1177/1045389X13476150.
- Junior, C.D.M., Erturk, A. and Inman, D.J. (2009), "An electromechanical finite element model for piezoelectric energy harvester plates", J. Sound Vib., 327(2), 9-25. https://doi.org/10.1016/j.jsv.2009.05.015.
- Kim, C., Ko, Y., Kim, T., Yoo, C. S., Choi, B., Han, S. H., ... & Kim, N. (2018), "Design and evaluation of an experimental system for monitoring the mechanical response of piezoelectric energy harvesters", Smart Struct. Syst., 22(2), 133-137. https://doi.org/10.12989/sss.2018.22.2.133.
- Kim, N. L., Jeong, S.S., Cheon, S.K., Park, T.G. and Kim, M.H. (2013), "Generating characteristics of hollow-plate-type piezoelectric energy harvesters", J. Korean Phys. Soc., 63(12), 2310-2313. https://doi.org/10.3938/jkps.63.2310.
- Li, W.G., He, S. and Yu, S. (2009), "Improving power density of a cantilever piezoelectric power harvester through a curved L-shaped proof mass", IEEE Tran. Indus. Elec., 57(3), 868-876. https://doi.org/10.1109/TIE.2009.2030761.
- Mehraeen, S., Jagannathan, S. and Corzine, K.A. (2009), "Energy harvesting from vibration with alternate scavenging circuitry and tapered cantilever beam", IEEE Tran. Indus. Elec., 57(3), 820-830. https://doi.org/10.1109/TIE.2009.2037652.
- Mishra, K., Panda, S.K., Kumar, V. and Dewangan, H.C. (2020), "Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator", Smart Struct. Syst., 26(3), 391-401. https://doi.org/10.12989/sss.2020.26.3.391.
- Muralt, P. (2000), "Ferroelectric thin films for micro-sensors and actuators: A review", J. Micromech. Microeng., 10(2), 136. https://doi.org/10.1088/0960-1317/10/2/307
- Priya, S. (2007), "Advances in energy harvesting using low profile piezoelectric transducers", J. Electroceram., 19(1), 167-184. https://doi.org/10.1007/s10832-007-9043-4.
- Pan, D. and Dai, F. (2018), "Design and analysis of a broadband vibratory energy harvester using bi-stable piezoelectric composite laminate", Energy Convers. Manage., 169, 149-160. https://doi.org/10.1016/j.enconman.2018.05.032.
- Rami Reddy, A., Umapathy, M., Ezhilarasi, D. and Gandhi, U. (2016), "Improved energy harvesting from vibration by introducing cavity in a cantilever beam", J. Vib. Control, 22(13), 3057-3066. https://doi.org/10.1177/1077546314558498.
- Rao, S.S. (2007), Vibration of Continuous Systems, Vol. 464, Wiley, New York.
- Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131. https://doi.org/10.1088/0964-1726/13/5/018
- Sarker, M.R., Julai, S., Sabri, M.F.M., Said, S.M., Islam, M.M. and Tahir, M. (2019), "Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system", Sensor. Actuat. A: Phys., 300, 111634. https://doi.org/10.1016/j.sna.2019.111634.
- Sodano, H.A., Inman, D.J. and Park, G. (2004), "A review of power harvesting from vibration using piezoelectric materials", Shock Vib. Digest, 36(3), 197-206. https://doi.org/10.1177/0583102404043275
- Usharani, R., Uma, G., Umapathy, M. and Choi, S.B. (2017), "A new broadband energy harvester using propped cantilever beam with variable overhang", Smart Struct. Syst., 19(5), 567-576. http://doi.org/10.12989/sss.2017.19.5.567.
- Wang, J., Zhao, G. and Zhang, H. (2009), "Optimal placement of piezoelectric curve beams in structural shape control", Smart Struct. Syst., 5(3), 241-260. http://doi.org/10.12989/sss.2009.5.3.241t.
- Wang, Z. and Xu, Y. (2007), "Vibration energy harvesting device based on air-spaced piezoelectric cantilevers", Appl. Phys. Lett., 90(26), 263512. https://doi.org/10.1063/1.2752726.
- Zamanian, M., Javadi, S., Firouzi, B. and Hosseini, S.A.A. (2018), "Modeling and analysis of power harvesting by a piezoelectric layer coated on an electrostatically actuated microcantilever", Mater. Res. Express, 5(12), 125502. https://doi.org/10.1088/2053-1591/aadf15
- Zamanian, M., Rezaei, H., Hadilu, M. and Hosseini, S.A.A. (2015), "A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeam", Smart Struct. Syst., 16(5), 891-918. http://doi.org/10.12989/sss.2015.16.5.891.
- Zhang, Y. and Zhu, B. (2012), "Analysis and simulation of multi-mode piezoelectric energy harvesters", Smart Struct. Syst., 9(6), 549-563. http://doi.org/10.12989/sss.2012.9.6.549.
- Zhao, D., Gan, M., Zhang, C., Wei, J., Liu, S. and Wang, T. ( (2018), "Analysis of broadband characteristics of two degree of freedom bistable piezoelectric energy harvester", Mater. Res. Express, 5(8), 085704. https://doi.org/10.1088/2053-1591/aad491