DOI QR코드

DOI QR Code

A Heuristic-Based Algorithm for Maximum k-Club Problem

MkCP (Maximum k-Club Problem)를 위한 휴리스틱 기반 알고리즘

  • Kim, SoJeong (Department of Applied Mathematics, Kongju National University) ;
  • Kim, ChanSoo (Department of Applied Mathematics, Kongju National University) ;
  • Han, KeunHee (Department of Applied Mathematics, Kongju National University)
  • Received : 2021.08.04
  • Accepted : 2021.10.20
  • Published : 2021.10.28

Abstract

Given an undirected simple graph, k-club is one of the proposed structures to model social groups that exist in various types in Social Network Analysis (SNA). Maximum k-Club Problem (MkCP) is to find a k-club of maximum cardinality in a graph. This paper introduces a Genetic Algorithm called HGA+DROP which can be used to approximate maximum k-club in graphs. Our algorithm modifies the existing k-CLIQUE & DROP algorithm and utilizes Heuristic Genetic Algorithms (HGA) to obtain multiple k-clubs. We experiment on DIMACS graphs for k = 2, 3, 4 and 5 to compare the performance of the proposed algorithm with existing algorithms.

k-club은 소셜 네트워크 분석에서 다양한 형태의 소셜 그룹을 설명하기 위해 제안된 그래프 모델 중 하나로, 단순 그래프에서 부분 정점 집합 S 에 의한 유도 부분그래프(Induced subgraph)의 지름이 k보다 작거나 같은 경우 S 를 k-club이라 한다. 본 논문에서는 유전알고리즘을 이용하여 그래프에서 크기가 최대인 k-club을 찾는 문제인 MkCP(Maximum k-Club Problem)을 계산하는 HGA+DROP 알고리즘을 제안한다. 본 알고리즘은 k-club을 위한 휴리스틱 알고리즘 k-CLIQUE & DROP을 변형하고 휴리스틱 유전 알고리즘(HGA)을 사용해 한 번의 수행으로 복수개의 k-club을 구하였다. 기존 알고리즘의 결과와 비교하기 위해 DIMACS 그래프들에 대하여 k가 2, 3, 4 그리고 5일 때 MkCP를 계산하였다.

Keywords

Acknowledgement

This work was supported by Building Data for AI Learning(Video Narrative and Q&A Data) from National Information Society Agency(NIA).

References

  1. J. M. Bourjolly, G. Laporte & G. Pesant. (2002). An exact algorithm for the maximum k-club problem in an undirected graph. European Journal of Operational Research, 138(1), 21-28. https://doi.org/10.1016/S0377-2217(01)00133-3
  2. R. J. Mokken. (1979). Cliques, clubs and clans. Quality & Quantity, 13(2), 161-173. https://doi.org/10.1007/BF00139635
  3. S. Shahram, & S. Butenko. (2013). Algorithms for the maximum k-club problem in graphs. Journal of Combinatorial Optimization, 26(3), 520-554. https://doi.org/10.1007/s10878-012-9473-z
  4. F. M. Pajouh & B. Balasundaram. (2012). On inclusionwise maximal and maximum cardinality k-clubs in graphs. Discrete Optimization, 9(2), 84-97. https://doi.org/10.1016/j.disopt.2012.02.002
  5. W. Stanley & K. Faust. (1994). Social network analysis: Methods and applications. Cambridge : Cambridge University Press
  6. B. Balabhaskar, S. Butenko & S. Trukhanov. (2005). Novel approaches for analyzing biological networks. Journal of Combinatorial Optimization, 10(1), 23-39. https://doi.org/10.1007/s10878-005-1857-x
  7. B. Balabhaskar, S. Butenko & I. V. Hicks. (2011). Clique relaxations in social network analysis: The maximum k-plex problem. Operations Research, 59(1), 133-142. https://doi.org/10.1287/opre.1100.0851
  8. B. Vladimir, S. Butenko & os P. M. Pardalos. (2006). Mining market data: A network approach. Computers & Operations Research, 33(11), 3171-3184. https://doi.org/10.1016/j.cor.2005.01.027
  9. R. D. Alba. (1973). A graph-theoretic definition of a sociometric clique. Journal of Mathematical Sociology, 3(1), 113-126. https://doi.org/10.1080/0022250X.1973.9989826
  10. B. Balasumdaram & F. M. Pajouh. (2013). Graph theoretic clique relaxations and applications. Handbook of combinatorial optimization, 1559-1598.
  11. B. Balasundaram, S. Butenko & S. Trukhanov. (2005). Novel approaches for analyzing biological networks. Journal of Combinatorial Optimization, 10(1), 23-39. https://doi.org/10.1007/s10878-005-1857-x
  12. J. M. Bourjolly, G. Laporte & G. Pesant. (2000). Heuristics for finding k-clubs in an undirected graph. Computers & Operations Research, 27(6), 559-569. https://doi.org/10.1016/S0305-0548(99)00047-7
  13. M. T. Almeida & F. D. Carvalho. (2014). Two-phase heuristics for the k-club problem. Computers & operations research, 52, 94-104. https://doi.org/10.1016/j.cor.2014.07.006.
  14. M. S. Chang, L.J. Hung. C. R. Lin & P. C. su. (2013). Finding large k-clubs in undirected graphs. Computing, 95(9), 739-758. DOI : 10.1007/s00607-012-0263-3
  15. M. T. Almeida & F. D. Carvalho. (2012). A comparison of integer models for the k-club problem. Working Paper CIO 3/2012, Universidade de Lisboa.
  16. M. T. Almeida & F. D. Carvalho. (2014). An analytical comparison of the LP relaxations of integer models for the k-club problem. European Journal of Operational Research, 232(3), 489-498. https://doi.org/10.1016/j.ejor.2013.08.004
  17. A. Veremyev & V. Boginski. (2012). Identifying large robust network clusters via new compact formulations of maximum k-club problems. European Journal of Operational Research, 218(2), 316-326. https://doi.org/10.1016/j.ejor.2011.10.027
  18. M. T. Almeida & F. D. Carvalho. (2012). Integer models and upper bounds for the 3-club problem. Networks, 60(3), 155-166. https://doi.org/10.1002/net.21455
  19. S. Laan et al. (2012). Fast finding of 2-clubs. University of Amsterdam, Amsterdam.
  20. S. Hartung, C. Komusiewicz, A. Nichterlein & O. Suchy. (2015). On structural parameterizations for the 2-club problem. Discrete Applied Mathematics, 185, 79-92. https://doi.org/10.1016/j.dam.2014.11.026
  21. E. Marchiori. (1998). A simple heuristic based genetic algorithm for the maximum clique problem. In Symposium on Applied Computing: Proceedings of the 1998 ACM symposium on Applied Computing (Vol. 27, pp. 366-373).
  22. Z. Michalewicz. (2013). Genetic algorithms+ data structures= evolution programs. Berlin : Springer Science & Business Media.
  23. D. A. Bader. H. Meyerhenke, P. Sanders & D. Wagner. (2011). 10th DIMACS Implementation Challenge-Graph Partitioning and Graph Clustering. Georgia : Georgia Institute of Technology