Acknowledgement
This work was supported by Kyungnam University Foundation Grant in 2021.
References
- M. A. Boksem & M. Tops. (2008). Mental fatigue: costs and benefits. Brain Res Rev, 59(1), 125-139. DOI : 10.1016/j.brainresrev.2008.07.001
- A. Chaudhuri & P. O. Behan. (2004). Fatigue in neurological disorders. Lancet, 363(9413), 978-988. DOI : 10.1016/S0140-6736(04)1594-2
- M. Jagannath & V. Balasubramanian. (2014). Assessment of early onset of driver fatigue using multimodal fatigue measures in a static simulator. Applied Ergonomics, 45(4), 1140-1147. DOI : 10.1016/j.apergo.2014.02.001
- M. Fallahi, M. Motamedzade, R. Heidarimoghadam, R. R. Soltanian, & S. Miyake. (2016). Effects of mental workload on physiological and subjective responses during traffic density monitoring: A field study. Applied Ergonomics, 52, 95-103. DOI : 10.1016/j.apero.2015.07.009
- F. Laurent et al. (2013). Multimodal information improves the rapid detection of mental fatigue. Biomedical Signal Processing and Control, 8(4), 400-408. DOI : 10.1016/j.bspc.2013.01.007
- S. Y. Ccheng, H. Y. Lee, C. M. Shu, & H. T. Hsu. (2007). Electroencephalographic study of mental fatigue in visual display terminal tasks. Journal of Medical and Biological Engineering, 27(3), 124-131.
- A. Sahayadhas, K. Sundaraj, & M. Murugappan. (2012). Detecting driver drowsiness based onsensors: a review. Sensors, 12(12), 16937-16953. DOI : 10.3390/s121216937
- U. R. Acharya, S. V. Sree, G. Swapna, R. J. Martis, & J. S. suri. (2013). Automated EEG analysis of epilepsy: a review. Knowledge-Based Systems, 45, 147-165. DOI : 10.1016/j.knosys.2013.02.014
- C. Berka, et al. (2007). EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat Space Environ Med, 78(5 Suppl), B231-244.
- A. Al-Nafjan, M. Hosny, Y. Al-Ohali, & A. Al-Wabil (2017). Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review. Appl Sci, 7(12), 1239 DOI : 10.3390/app7121239
- N. Bigdely-Shamlo, T. Mullen, C. Kothe, K. M. Su, & K. A. Bobbins. (2015). The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in Neuroinformatics, 9, 16 DOI : 10.3389/fninf.2015.00016
- A. Gramfort, d. Strohmeier, J. Haueisen, M. S. Hamalainen, & M. Kowalski. (2013). Time-frequency mixed-norm estimates: sparse M/EEG imaging with non-stationsry source activations. NeuroImage, 70, 410-422 DOI : 10.1016/j.neuroimage.2012.12.051
- C. Clerc, L. Bougrain, & F. Lotte. (2016). Brain-Computer Interfaces 1: Foundations and Methods. New York: Wiley. DOI : 10.1002/9781119144977
- M. Alom, et al. (2019). A state-of-the-art survey on deep learning theory and architectures. Electronics, 8(3), 292. DOI : 10.3390/electronics8030292
- J. Jung, B. Yu, D. Lee, & S. Lee. (2018). Classification of drowsinesss levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals. Brain Sci, 9(12), 348. DOI : 10.3390/brainsci9120348
- H. Alaskar. (2018). Convolutional neural network application in biomedical signals. J Comput Sci Technol, 6(2), 45-59. DOI : 10.15640/jns.v6n2a5
- H. Zeng, et al. (2018). EEG classification of driver mental states by deep learning. Cogn Neurodyn, 12, 597-606. DOI : 10.1007/s11571-018-9496-y
- S. Chaabene, B. Bouaziz, A. Boudaya, A. Hokelmann, A. Ammar, & L. Chaari. (2021). Convolutional neural network for drowsiness detection using EEG signals. Sensors, 21(5), 1734. DOI : 10.3390/s21051734
- A. Craig, Y. Tran, N. Wijesuriva, & H. Nguyen. (2012). Regional brain wave activity changes associated with fatigue. Psychophysiology, 49(4), 574-582. DOI : 10.1111/j.1469-8986.2011.01329.x
- G. Li, et al. (2020). The impact of mental fatigue on brain activity: a comparative study both in resting state and task state using EEG. BMC Neuroscience, 21(20). DOI : 10.1186/s12868-020-00569-1