DOI QR코드

DOI QR Code

An Empirical Study of Personalized Thumbnail Curation of Netflix

개인화된 썸네일 큐레이션 사용성 평가 -넷플릭스 사례를 통한 UX study-

  • Park, Siwon (College of Art & Technology, Chung-Ang University) ;
  • Park, Jisu (College of Art & Technology, Chung-Ang University) ;
  • Kang, Jisu (Graduate School of Advanced Imageing Science, Multimedia and Film, Chung-Ang University) ;
  • Rhee, Boa (College of Art & Technology, Chung-Ang University)
  • 박시원 (중앙대학교 예술공학대학) ;
  • 박지수 (중앙대학교 예술공학대학) ;
  • 강지수 (중앙대학교 첨단영상대학원 예술공학전공) ;
  • 이보아 (중앙대학교 예술공학대학)
  • Received : 2021.07.19
  • Accepted : 2021.10.20
  • Published : 2021.10.28

Abstract

This study empirically analyzed the users' experiences with the Netflix thumbnail curation based on the Technology Acceptance Model(TAM). According to the correlation analysis results, the higher the dependence on the thumbnails, the higher the satisfaction with the thumbnail curation. Both Perceived Informational Usefulness(PIU) and Perceived Ease of Use(PEOU) had correlations with the degree of satisfaction with the thumbnail curation. In particular, the factors of relevance in PEOU had the greatest impact on the degree of satisfaction and this result proved that the suitability factors of the thumbnails had significant correlations with the degree of satisfaction. The degree of satisfaction with the thumbnail curation also positively correlated with Netflix's overall degree of satisfaction and behavioral intention to use the Netflix. This study demonstrated the suitability of the TAM as a UX evaluation tool for the Netflix thumbnail curation.

본 연구는 기술수용모델을 기반으로 넷플릭스 썸네일 큐레이션에 대한 사용자 경험에 대해 실증적으로 접근했다. 상관관계 분석 결과를 살펴보면, 썸네일에 대한 의존도가 높을수록 썸네일 큐레이션에 대한 만족도가 높았고, 썸네일 정보 유용성과 썸네일 이용 용이성은 썸네일 큐레이션 만족도에 유의미한 영향을 미쳤다. 특히 썸네일 이용 용이성의 경우, 세부 변인 가운데 썸네일 적합성에 대한 영향력이 가장 높게 제시되었으며, 이 변인은 썸네일 큐레이션 만족도에 유의미한 영향을 미친다는 사실도 입증되었다. 또한 넷플릭스 썸네일 큐레이션의 만족도는 넷플릭스 전체 만족도와 행동적 이용 의사에 긍정적 영향을 미쳤으며, 본 연구를 통해 넷플릭스 썸네일 큐레이션 사용성 평가도구로써 기술수용모델의 적합성이 입증되었다.

Keywords

References

  1. Y. C. Jung. (2019). 2019 Investigation of Broadcasting Media Usage Behavior. Gwacheon : KCC.
  2. Mobile Index. (2020). Korea Mobile App Market Analysis Report in the first half of 2020. Seoul : Mobile Index.
  3. KOCCA. (2020. June). The Effect of Corona 19 on Content Usage Behavior. Ncontent, 15, 7-73.
  4. I. C. UTA. (2020). 8 key factors behind Neflix's success story. Brand Minds. https://brandminds.live/8-key-factors-behind-netflixs-success-story/
  5. C. Gomez-Uribe & N Hunt. (2015). Netflix Recommender System Algorithms Business Value and Innovation. ACM Transactions on Management Information Systems. 6(4). 1-19. https://doi.org/10.1145/2843948
  6. G. Krishnan. (2016). Selecting the best artwork for videos through A/B testing. Netflix Tech Blog. https://netflixtechblog.com/selecting-the-best-artwork-for-videos-through-a-b-testing-f6155c4595f6
  7. B. H. Bae. (2013). OTT Service. Naju : KISA.
  8. Y. S. Lee. (2021). Over 1 bilion OTT subscribers including Netflix.. Movie theater sales are 72% decreased. ChosunBiz. https://biz.chosun.com/site/data/html_dir/2021/03/21/2021032100227.html
  9. S. O. Kang. (2021). Netflix reports first-quarter results in 2021.. Pay-per-view households surpass 208 milion. Datanet. https://www.datanet.co.kr/news/articleView.html?idxno=158627
  10. H. J. Kwon. (2021). Netflix has 3.98 milion new subscribers in the first quarter. A slowdown in growth. MediaSR. https://www.mediasr.co.kr/news/articleView.html?idxno=68279
  11. KOCCA. (2019). Content Industry Trend of USA. Naju : KOCCA.
  12. K. Macdonald. (2016). The Netflix Effect: Technology and Entertainment in the 21th Century. New York : Bloomsbury Publishing USA.
  13. H. B. Park, H. S. Lee, D. S. Han. (2020). The Effects of Perceived Service Attributes on Continuance Usage Intention of Netflix. Journal of Cybercommunication Academic Society, 13(1), 5-46.
  14. I. Y. Kang. (2016). Secrets of Netflix's Recommended System: Simple Labor and Machine Learning. IT Donga. https://it.donga.com/23942/.
  15. E. Fernandez-Manzano, E. Neira & J. Clares-Gavilan. (2016). Data management in audiovisual business: Netflix as a case study. Profesional de la Informacion, 25(4), 568-576. https://doi.org/10.3145/epi.2016.jul.06
  16. S. Y. Oh., Y. H. Oh, S. H. Han, H. J. Kim. (2012). Broadcast Content Recommender System based on User&s Viewing History. Journal of Broadcast engineering, 17(1), 129-139. https://doi.org/10.5909/JEB.2012.17.1.129
  17. J. W. Kim. (2019). A study on the use of Big Data in Film Industry - Focused on 'Netflix' Analytical Tools. The Korean Journal of Arts Studies, 25, 51-64. https://doi.org/10.20976/kjas.2019..25.003
  18. J. Y. Lee. (2017). The Story of Netflix's Strategy to bankrupt Blockbuster(2). MoneyToday. https://news.mt.co.kr/mtview.php?no=2017121808191955107
  19. B. W. Seo. (2016). April and May 2016 (vol.05). Seoul : KOCCA.
  20. DMC MEDIA. (2019). 2019 OTT Platform Trend Analysis - part 1. Seoul : DMC REPORT.
  21. A. Chandrashekar., F. Amat., J. Basilico, T. Jebara. (2017). Artwork Personalization at Netflix. THE NETFLIX TECH BLOG. https://netflixtechblog.com/artwork-personalization-c589f074ad76
  22. J. H. You. & C. Park. (2010). A Comprehensive Review of Technology Acceptance Model Researches. Entrue Jounal of Information Technology, 9(2), 31-50.
  23. E. Y. Kim, J. H. Lee, D. U. Seo. (2013). A Study on the Effect of Organization's Environment on Acceptance Intention for Big Data System. Journal of Information Technology Applications & Management, 20(4), 1-18. https://doi.org/10.21219/JITAM.2013.20.4.001
  24. S. Y. Jung. ㄴ(2019). Effects of Artificial Intelligence-Based Content Curation Services on User's Satisfaction: Focused on Netflix and Naver's AiRS service. Mater degree dissertation. Hongik University. Seoul.
  25. Y. S. Shin. (2019). Information Delivery Effect of Thumbnails on Mobile Video Content. Master degree dissertation. Ewha Womans University : Seoul.
  26. E. J. Jo. (2020). Development of A/B Testing Method Considering Data Distribution. Master degree dissertation. Myongji University, Yongin.
  27. S. Urban. (2016). It's all A/Bout Testing: The Netflix Experimentation Platform. Netflix Tech Blog. https://netflixtechblog.com/its-all-a-bout-testing-the-netflix-experimentation-platform-4e1ca458c15
  28. I. Bojinov. (2020. March). Avoid the Pitfalls of A/B Testing. Harvard Business Review, 2, 28-53.