Acknowledgement
This work is supported by a funding supported by the National Research Foundation of Korea (2018R1A2A3074987).
References
- Al Nabhani, Z., Dulauroy, S., Marques, R., Cousu, C., Al Bounny, S., Dejardin, F., Sparwasser, T., Berard, M., Cerf-Bensussan, N., and Eberl, G. (2019). A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50, 1276-1288.e5. https://doi.org/10.1016/j.immuni.2019.02.014
- Andreas, N.J., Kampmann, B., and Mehring Le-Doare, K. (2015). Human breast milk: a review on its composition and bioactivity. Early Hum. Dev. 91, 629-635. https://doi.org/10.1016/j.earlhumdev.2015.08.013
- Arrieta, M.C., Arevalo, A., Stiemsma, L., Dimitriu, P., Chico, M.E., Loor, S., Vaca, M., Boutin, R.C.T., Morien, E., Jin, M., et al. (2018). Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J. Allergy Clin. Immunol. 142, 424-434.e10. https://doi.org/10.1016/j.jaci.2017.08.041
- Duar, R.M., Casaburi, G., Mitchell, R.D., Scofield, L.N.C., Ortega Ramirez, C.A., Barile, D., Henrick, B.M., and Frese, S.A. (2020a). Comparative genome analysis of Bifidobacterium longum subsp. infantis strains reveals variation in human milk oligosaccharide utilization genes among commercial probiotics. Nutrients 12, 3247. https://doi.org/10.3390/nu12113247
- Duar, R.M., Henrick, B.M., Casaburi, G., and Frese, S.A. (2020b). Integrating the ecosystem services framework to define dysbiosis of the breastfed infant gut: the role of B. infantis and human milk oligosaccharides. Front. Nutr. 7, 33. https://doi.org/10.3389/fnut.2020.00033
- Henrick, B.M., Chew, S., Casaburi, G., Brown, H.K., Frese, S.A., Zhou, Y., Underwood, M.A., and Smilowitz, J.T. (2019). Colonization by B. infantis EVC001 modulates enteric inflammation in exclusively breastfed infants. Pediatr. Res. 86, 749-757. https://doi.org/10.1038/s41390-019-0533-2
- Henrick, B.M., Rodriguez, L., Lakshmikanth, T., Pou, C., Henckel, E., Arzoomand, A., Olin, A., Wang, J., Mikes, J., Tan, Z., et al. (2021). Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884-3898.e11. https://doi.org/10.1016/j.cell.2021.05.030
- Jung, G.T., Kim, K.P., and Kim, K. (2020). How to interpret and integrate multi-omics data at systems level. Anim. Cells Syst. (Seoul) 24, 1-7. https://doi.org/10.1080/19768354.2020.1721321
- Knoop, K.A., Gustafsson, J.K., McDonald, K.G., Kulkarni, D.H., Coughlin, P.E., McCrate, S., Kim, D., Hsieh, C.S., Hogan, S.P., Elson, C.O., et al. (2017). Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci. Immunol. 2, eaao1314. https://doi.org/10.1126/sciimmunol.aao1314
- Kostandy, R.R. and Ludington-Hoe, S.M. (2019). The evolution of the science of kangaroo (mother) care (skin-to-skin contact). Birth Defects Res. 111, 1032-1043. https://doi.org/10.1002/bdr2.1565
- Lee, S.W., Park, H.J., Kim, S.H., Shin, S., Kim, K.H., Park, S.J., Hong, S., and Jeon, S.H. (2019). TLR4-dependent effects of ISAg treatment on conventional T cell polarization in vivo. Anim. Cells Syst. (Seoul) 23, 184-191. https://doi.org/10.1080/19768354.2019.1610059
- Rhoads, J.M., Collins, J., Fatheree, N.Y., Hashmi, S.S., Taylor, C.M., Luo, M., Hoang, T.K., Gleason, W.A., Van Arsdall, M.R., Navarro, F., et al. (2018). Infant colic represents gut inflammation and dysbiosis. J. Pediatr. 203, 55-61.e3. https://doi.org/10.1016/j.jpeds.2018.07.042
- Ryu, H., Kim, J., Kim, D., Lee, J.E., and Chung, Y. (2019). Cellular and molecular links between autoimmunity and lipid metabolism. Mol. Cells 42, 747-754. https://doi.org/10.14348/molcells.2019.0196
- Schaupp, L., Mut0h, S., Rogell, L., Kofoed-Branzk, M., Melchior, F., Lienenklaus, S., Ganal-Vonarburg, S.C., Klein, M., Guendel, F., Hain, T., et al. (2020). Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181, 1080-1096.e19. https://doi.org/10.1016/j.cell.2020.04.022
- Sela, D.A. and Mills, D.A. (2010). Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18, 298-307. https://doi.org/10.1016/j.tim.2010.03.008
- Stefan, K.L., Kim, M.V., Iwasaki, A., and Kasper, D.L. (2020). Commensal microbiota modulation of natural resistance to virus infection. Cell 183, 1312-1324.e10. https://doi.org/10.1016/j.cell.2020.10.047
- Sundblad, V., Quintar, A.A., Morosi, L.G., Niveloni, S.I., Cabanne, A., Smecuol, E., Maurino, E., Marino, K.V., Bai, J.C., Maldonado, C.A., et al. (2018). Galectins in intestinal inflammation: galectin-1 expression delineates response to treatment in celiac disease patients. Front. Immunol. 9, 379. https://doi.org/10.3389/fimmu.2018.00379
- Uhlen, M., Karlsson, M.J., Zhong, W., Tebani, A., Pou, C., Mikes, J., Lakshmikanth, T., Forsstrom, B., Edfors, F., Odeberg, J., et al. (2019). A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science 366, eaax9198. https://doi.org/10.1126/science.aax9198
- Vatanen, T., Kostic, A.D., d'Hennezel, E., Siljander, H., Franzosa, E.A., Yassour, M., Kolde, R., Vlamakis, H., Arthur, T.D., Hamalainen, A.M., et al. (2016). Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842-853. https://doi.org/10.1016/j.cell.2016.04.007
- Yaseen, H., Butenko, S., Polishuk-Zotkin, I., Schif-Zuck, S., Perez-Saez, J.M., Rabinovich, G.A., and Ariel, A. (2020). Galectin-1 facilitates macrophage reprogramming and resolution of inflammation through IFN-β. Front. Pharmacol. 11, 901. https://doi.org/10.3389/fphar.2020.00901
- Yi, J., Jung, J., Han, D., Surh, C.D., and Lee, Y.J. (2019). Segmented filamentous bacteria induce divergent populations of antigen-specific CD4 T cells in the small intestine. Mol. Cells 42, 228-236. https://doi.org/10.14348/molcells.2018.0424
- Yoshida, H. and Hunter, C.A. (2015). The immunobiology of interleukin-27. Annu. Rev. Immunol. 33, 417-443. https://doi.org/10.1146/annurev-immunol-032414-112134