Acknowledgement
이 논문은 2021년도 정부 (과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No. 2020-0-00844, 엣지 서버시스템 자원 관리 및 제어를 위한 경량 시스템 소프트웨어 기술 개발).
References
- J. Ren, D. Zhang, S. He, Y. Zhang, T. Li, "A Survey on End-Edge-Cloud Orchestrated Network Computing Paradigms: Transparent Computing, Mobile Edge Computing, Fog Computing, and Cloudlet," ACM Computing Surveys, Vol. 52, No. 6, pp.1-36, 2020.
- X. Wang, Y .Han, V.C.M. Leung, D. Niyato, X. Yan, X. Chen, "Convergence of Edge Computing and deep Learning: A Comprehensive Survey," IEEE Communications Surveys & Tutorials, Vol. 22, No. 2, pp. 869-904, 2020. https://doi.org/10.1109/COMST.2020.2970550
- Karbon 700, https://www.onlogic.com/computers/rugged/karbon700/
- MK400-70, https://www.onlogic.com/mk400-70/
- S. Kim, Y. Kim, "A design of GPU container co-execution framework measuring interference among applications," KNOM Review, Vol. 23, No. 1, pp. 43-50, 2020. https://doi.org/10.22670/KNOM.2020.23.1.43
- Q. Zeng, Y. Du, K. Huang, K.K. Leung, "Energy-Efficient Resource Management for Federated Edge Learning with CPU-GPU Heterogeneous Computing," arXiv:2007.07122v2 [cs.IT], 2020.
- G. Cho, "Hybrid Resource Scheduling Scheme for Video Surveillance in GPU-FPGA Accelerated Edge System," Master's thesis, KAIST, https://koasas.kaist.ac.kr/handle/10203/284802
- X. Liu, J. Yang, C. Zou, Q. Chen, "Collaborative Edge Computing With FPGA-Based CNN Accelerators for Energy-Efficient and Time-Aware Face Tracking System," IEEE Transactions on Computational Social Systems (Early Access), doi: 10.1109/TCSS.2021.3059318
- OpenVINO, https://docs.openvinotoolkit.org/
- Kubernetes, https://kubernetes.io/
- Z. Zhong, and R. Buyya, " A Cost-Efficient Container Orchestration Strategy in Kubernetes-Based Cloud Computing Infrastructures with Heterogeneous Resources," ACM Trans. on Internet Technology, Vol. 20, Issue 2, pp. 1-24, 2021 https://doi.org/10.1145/3378447
- Prometheus, https://prometheus.io/