Acknowledgement
This study was partially supported by a grant from the National Cancer Center (NCC-0810410-3), BK21 FOUR program, the Basic Science Research Program, through the National Research Foundation (NRF) of Korea (NRF-2020R1A2C3004973, NRF-2018R1A5A2023127, NRF-2020M3E5E2038356), and Global PhD. Fellowship through the NRF of Korea (NRF-2018H1A2A1061990). We would like to thank Dr. Richard Yoo (University of Michigan at Ann Arbor, USA) for critically reading of the manuscript.
References
- Algire, C., Zakikhani, M., Blouin, M. J., Shuai, J. H. and Pollak, M. (2008) Metformin attenuates the stimulatory effect of a high-energy diet on in vivo LLC1 carcinoma growth. Endocr. Relat. Cancer 15, 833-839. https://doi.org/10.1677/ERC-08-0038
- Barriere, G., Tartary, M. and Rigaud, M. (2013) Metformin: a rising star to fight the epithelial mesenchymal transition in oncology. Anticancer Agents Med. Chem. 13, 333-340. https://doi.org/10.2174/1871520611313020018
- Ben Sahra, I., Laurent, K., Loubat, A., Giorgetti-Peraldi, S., Colosetti, P., Auberger, P., Tanti, J. F., Le Marchand-Brustel, Y. and Bost, F. (2008) The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27, 3576-3586. https://doi.org/10.1038/sj.onc.1211024
- Ben Sahra, I., Le Marchand-Brustel, Y., Tanti, J. F. and Bost, F. (2010) Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol. Cancer Ther. 9, 1092-1099. https://doi.org/10.1158/1535-7163.MCT-09-1186
- Brancher, S., Stoer, N. C., Weiderpass, E., Damhuis, R. A., Johannesen, T. B., Botteri, E. and Strand, T. E. (2021) Metformin use and lung cancer survival: a population-based study in Norway. Br. J. Cancer 124, 1018-1025. https://doi.org/10.1038/s41416-020-01186-9
- Buzzai, M., Jones, R. G., Amaravadi, R. K., Lum, J. J., DeBerardinis, R. J., Zhao, F., Viollet, B. and Thompson, C. B. (2007) Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745-6752. https://doi.org/10.1158/0008-5472.CAN-06-4447
- Byun, H. J., Kim, B. R., Yoo, R., Park, S. Y. and Rho, S. B. (2012) sMEK1 enhances gemcitabine anti-cancer activity through inhibition of phosphorylation of Akt/mTOR. Apoptosis 17, 1095-1103. https://doi.org/10.1007/s10495-012-0751-0
- Chen, X., Li, K. and Zhao, G. (2018) propofol inhibits hela cells by impairing autophagic flux via AMP-activated protein kinase (AMPK) activation and endoplasmic reticulum stress regulated by calcium. Med. Sci. Monit. 24, 2339-2349. https://doi.org/10.12659/MSM.909144
- Dowling, R. J., Zakikhani, M., Fantus, I. G., Pollak, M. and Sonenberg, N. (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 67, 10804-10812. https://doi.org/10.1158/0008-5472.CAN-07-2310
- Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. and Morris, A. D. (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304-1305. https://doi.org/10.1136/bmj.38415.708634.f7
- Fasih, A., Elbaz, H. A., Huttemann, M., Konski, A. A. and Zielske, S. P. (2014) Radiosensitization of pancreatic cancer cells by metformin through the AMPK pathway. Radiat. Res. 182, 50-59. https://doi.org/10.1667/rr13568.1
- Fogarty, S., Ross, F. A., Vara Ciruelos, D., Gray, A., Gowans, G. J. and Hardie, D. G. (2016) AMPK causes cell cycle arrest in LKB1-deficient cells via activation of CAMKK2. Mol. Cancer Res. 14, 683-695. https://doi.org/10.1158/1541-7786.MCR-15-0479
- Garcia, D. and Shaw, R. J. (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66, 789-800. https://doi.org/10.1016/j.molcel.2017.05.032
- Gotlieb, W. H., Saumet, J., Beauchamp, M. C., Gu, J., Lau, S., Pollak, M. N. and Bruchim, I. (2008) In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol. Oncol. 110, 246-250. https://doi.org/10.1016/j.ygyno.2008.04.008
- Gou, S., Cui, P., Li, X., Shi, P., Liu, T. and Wang, C. (2013) Low concentrations of metformin selectively inhibit CD133(+) cell proliferation in pancreatic cancer and have anticancer action. PLoS ONE 8, e63969. https://doi.org/10.1371/journal.pone.0063969
- Green, A. S., Chapuis, N., Lacombe, C., Mayeux, P., Bouscary, D. and Tamburini, J. (2011) LKB1/AMPK/mTOR signaling pathway in hematological malignancies: from metabolism to cancer cell biology. Cell Cycle 10, 2115-2120. https://doi.org/10.4161/cc.10.13.16244
- Hardie, D. G. (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 25, 1895-1908. https://doi.org/10.1101/gad.17420111
- Herrero-Martin, G., Hoyer-Hansen, M., Garcia-Garcia, C., Fumarola, C., Farkas, T., Lopez-Rivas, A. and Jaattela, M. (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 28, 677-685. https://doi.org/10.1038/emboj.2009.8
- Kang, G. J., Park, M. K., Byun, H. J., Kim, H. J., Kim, E. J., Yu, L., Kim, B., Shim, J. G., Lee, H. and Lee, C. H. (2020) SARNP, a participant in mRNA splicing and export, negatively regulates E-cadherin expression via interaction with pinin. J. Cell. Physiol. 235, 1543-1555. https://doi.org/10.1002/jcp.29073
- Kang, S., Dong, S. M., Kim, B. R., Park, M. S., Trink, B., Byun, H. J. and Rho, S. B. (2012) Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 17, 989-997. https://doi.org/10.1007/s10495-012-0717-2
- Lee, B. B., Kim, Y., Kim, D., Cho, E. Y., Han, J., Kim, H. K., Shim, Y. M. and Kim, D. H. (2019) Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 downregulation in non-small cell lung cancer cells. J. Cell. Mol. Med. 23, 2872-2889. https://doi.org/10.1111/jcmm.14194
- Lei, Y., Yi, Y., Liu, Y., Liu, X., Keller, E. T., Qian, C. N., Zhang, J. and Lu, Y. (2017) Metformin targets multiple signaling pathways in cancer. Chin. J. Cancer 36, 17. https://doi.org/10.1186/s40880-017-0184-9
- Lengyel, E., Litchfield, L. M., Mitra, A. K., Nieman, K. M., Mukherjee, A., Zhang, Y., Johnson, A., Bradaric, M., Lee, W. and Romero, I. L. (2015) Metformin inhibits ovarian cancer growth and increases sensitivity to paclitaxel in mouse models. Am. J. Obstet. Gynecol. 212, 479.e1-479.e10.
- Li, J., Zhong, L., Wang, F. and Zhu, H. (2017) Dissecting the role of AMP-activated protein kinase in human diseases. Acta Pharm. Sin. B 7, 249-259. https://doi.org/10.1016/j.apsb.2016.12.003
- Li, M., Li, X., Zhang, H. and Lu, Y. (2018) Molecular mechanisms of metformin for diabetes and cancer treatment. Front. Physiol. 9, 1039. https://doi.org/10.3389/fphys.2018.01039
- Liu, Y., Marks, K., Cowley, G. S., Carretero, J., Liu, Q., Nieland, T. J., Xu, C., Cohoon, T. J., Gao, P., Zhang, Y., Chen, Z., Altabef, A. B., Tchaicha, J. H., Wang, X., Choe, S., Driggers, E. M., Zhang, J., Bailey, S. T., Sharpless, N. E., Hayes, D. N., Patel, N. M., Janne, P. A., Bardeesy, N., Engelman, J. A., Manning, B. D., Shaw, R. J., Asara, J. M., Scully, R., Kimmelman, A., Byers, L. A., Gibbons, D. L., Wistuba, I. I., Heymach, J. V., Kwiatkowski, D. J., Kim, W. Y., Kung, A. L., Gray, N. S., Root, D. E., Cantley, L. C. and Wong, K. K. (2013) Metabolic and functional genomic studies identify deoxythymidylate kinase as a target in LKB1-mutant lung cancer. Cancer Discov. 3, 870-879. https://doi.org/10.1158/2159-8290.CD-13-0015
- Loubiere, C., Clavel, S., Gilleron, J., Harisseh, R., Fauconnier, J., BenSahra, I., Kaminski, L., Laurent, K., Herkenne, S., Lacas-Gervais, S., Ambrosetti, D., Alcor, D., Rocchi, S., Cormont, M., Michiels, J. F., Mari, B., Mazure, N. M., Scorrano, L., Lacampagne, A., Gharib, A., Tanti, J. F. and Bost, F. (2017) The energy disruptor metformin targets mitochondrial integrity via modification of calcium flux in cancer cells. Sci. Rep. 7, 5040. https://doi.org/10.1038/s41598-017-05052-2
- Mallik, R. and Chowdhury, T. A. (2018) Metformin in cancer. Diabetes Res. Clin. Pract. 143, 409-419. https://doi.org/10.1016/j.diabres.2018.05.023
- Nangia-Makker, P., Yu, Y., Vasudevan, A., Farhana, L., Rajendra, S. G., Levi, E. and Majumdar, A. P. (2014) Metformin: a potential therapeutic agent for recurrent colon cancer. PLoS ONE 9, e84369. https://doi.org/10.1371/journal.pone.0084369
- Qu, C., Zhang, W., Zheng, G., Zhang, Z., Yin, J. and He, Z. (2014) Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol. Cell. Biochem. 386, 63-71. https://doi.org/10.1007/s11010-013-1845-x
- Rho, S. B., Song, Y. J., Lim, M. C., Lee, S. H., Kim, B. R. and Park, S. Y. (2012) Programmed cell death 6 (PDCD6) inhibits angiogenesis through PI3K/mTOR/p70S6K pathway by interacting of VEG-FR-2. Cell. Signal. 24, 131-139. https://doi.org/10.1016/j.cellsig.2011.08.013
- Sanli, T., Rashid, A., Liu, C., Harding, S., Bristow, R. G., Cutz, J. C., Singh, G., Wright, J. and Tsakiridis, T. (2010) Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 78, 221-229. https://doi.org/10.1016/j.ijrobp.2010.03.005
- Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A. and Cantley, L. C. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. U.S.A. 101, 3329-3335. https://doi.org/10.1073/pnas.0308061100
- Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M. and Cantley, L. C. (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646. https://doi.org/10.1126/science.1120781
- Steinberg, G. R. and Kemp, B. E. (2009) AMPK in health and disease. Physiol. Rev. 89, 1025-1078. https://doi.org/10.1152/physrev.00011.2008
- Suh, D. H., Lee, S., Park, H. S. and Park, N. H. (2020) Medroxyprogesterone reverses tolerable dose metformin-induced inhibition of invasion via matrix metallopeptidase-9 and transforming growth factor-β1 in KLE endometrial cancer cells. J. Clin. Med. 9, 3585. https://doi.org/10.3390/jcm9113585
- Sun, Y., Connors, K. E. and Yang, D. Q. (2007) AICAR induces phosphorylation of AMPK in an ATM-dependent, LKB1-independent manner. Mol. Cell. Biochem. 306, 239-245. https://doi.org/10.1007/s11010-007-9575-6
- Towler, M. C. and Hardie, D. G. (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100, 328-341. https://doi.org/10.1161/01.RES.0000256090.42690.05
- Triggle, C. R. and Ding, H. (2017) Metformin is not just an antihyperglycaemic drug but also has protective effects on the vascular endothelium. Acta Physiol. 219, 138-151. https://doi.org/10.1111/apha.12644
- Uehara, T., Mitsuhashi, A., Tsuruoka, N. and Shozu, M. (2015) Metformin potentiates the anticancer effects of cisplatin under normoxic conditions in vitro. Oncol. Rep. 33, 744-750. https://doi.org/10.3892/or.2014.3611
- Vial, G., Detaille, D. and Guigas, B. (2019) Role of mitochondria in the mechanism(s) of action of metformin. Front. Endocrinol. 10, 294. https://doi.org/10.3389/fendo.2019.00294
- Wang, W. and Guan, K. L. (2009) AMP-activated protein kinase and cancer. Acta Physiol. 196, 55-63. https://doi.org/10.1111/j.1748-1716.2009.01980.x
- Whang, Y. M., Park, S. I., Trenary, I. A., Egnatchik, R. A., Fessel, J. P., Kaufman, J. M., Carbone, D. P. and Young, J. D. (2016) LKB1 deficiency enhances sensitivity to energetic stress induced by erlotinib treatment in non-small-cell lung cancer (NSCLC) cells. Oncogene 35, 856-866. https://doi.org/10.1038/onc.2015.140
- Xiao, X., He, Q., Lu, C., Werle, K. D., Zhao, R. X., Chen, J., Davis, B. C., Cui, R., Liang, J. and Xu, Z. X. (2012) Metformin impairs the growth of liver kinase B1-intact cervical cancer cells. Gynecol. Oncol. 127, 249-255. https://doi.org/10.1016/j.ygyno.2012.06.032
- Yuan, H. X., Xiong, Y. and Guan, K. L. (2013) Nutrient sensing, metabolism, and cell growth control. Mol. Cell 49, 379-387. https://doi.org/10.1016/j.molcel.2013.01.019
- Zakikhani, M., Dowling, R., Fantus, I. G., Sonenberg, N. and Pollak, M. (2006) Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269-10273. https://doi.org/10.1158/0008-5472.CAN-06-1500
- Zhang, J. and Snyder, S. H. (1992) Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 89, 9382-9385. https://doi.org/10.1073/pnas.89.20.9382
- Zhang, J., Xu, H., Zhou, X., Li, Y., Liu, T., Yin, X. and Zhang, B. (2017) Role of metformin in inhibiting estrogen-induced proliferation and regulating ERalpha and ERbeta expression in human endometrial cancer cells. Oncol. Lett. 14, 4949-4956. https://doi.org/10.3892/ol.2017.6877
- Zhang, Y., Storr, S. J., Johnson, K., Green, A. R., Rakha, E. A., Ellis, I. O., Morgan, D. A. and Martin, S. G. (2014) Involvement of metformin and AMPK in the radioresponse and prognosis of luminal versus basal-like breast cancer treated with radiotherapy. Oncotarget 5, 12936-12949. https://doi.org/10.18632/oncotarget.2683
- Zhao, D., Long, X. D., Lu, T. F., Wang, T., Zhang, W. W., Liu, Y. X., Cui, X. L., Dai, H. J., Xue, F. and Xia, Q. (2015) Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int. J. Cancer 136, 2556-2565. https://doi.org/10.1002/ijc.29305
- Zhu, Z., Jiang, T., Suo, H., Xu, S., Zhang, C., Ying, G. and Yan, Z. (2021) Metformin potentiates the effects of anlotinib in NSCLC via AMPK/mTOR and ROS-mediated signaling pathways. Front. Pharmacol. 12, 712181. https://doi.org/10.3389/fphar.2021.712181
- Zi, F. M., He, J. S., Li, Y., Wu, C., Yang, L., Yang, Y., Wang, L. J., He, D. H., Zhao, Y., Wu, W. J., Zheng, G. F., Han, X. Y., Huang, H., Yi, Q. and Cai, Z. (2015) Metformin displays anti-myeloma activity and synergistic effect with dexamethasone in in vitro and in vivo xenograft models. Cancer Lett. 356, 443-453. https://doi.org/10.1016/j.canlet.2014.09.050