DOI QR코드

DOI QR Code

Knockdown of LKB1 Sensitizes Endometrial Cancer Cells via AMPK Activation

  • Rho, Seung Bae (Division of Translational Science, Research Institute, National Cancer Center) ;
  • Byun, Hyun Jung (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Kim, Boh-Ram (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Lee, Chang Hoon (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University)
  • Received : 2021.08.07
  • Accepted : 2021.09.07
  • Published : 2021.11.01

Abstract

Metformin is an anti-diabetic drug and has anticancer effects on various cancers. Several studies have suggested that metformin reduces cell proliferation and stimulates cell-cycle arrest and apoptosis. However, the definitive molecular mechanism of metformin in the pathophysiological signaling in endometrial tumorigenesis and metastasis is not clearly understood. In this study, we examined the effects of metformin on the cell viability and apoptosis of human cervical HeLa and endometrial HEC-1-A and KLE cancer cells. Metformin suppressed cell growth in a dose-dependent manner and dramatically evoked apoptosis in HeLa cervical cancer cells, while apoptotic cell death and growth inhibition were not observed in endometrial (HEC-1-A, KLE) cell lines. Accordingly, the p27 and p21 promoter activities were enhanced while Bcl-2 and IL-6 activities were significantly reduced by metformin treatment. Metformin diminished the phosphorylation of mTOR, p70S6K and 4E-BP1 by accelerating adenosine monophosphate-activated kinase (AMPK) in HeLa cancer cells, but it did not affect other cell lines. To determine why the anti-proliferative effects are observed only in HeLa cells, we examined the expression level of liver kinase B1 (LKB1) since metformin and LKB1 share the same signalling system, and we found that the LKB1 gene is not expressed only in HeLa cancer cells. Consistently, the overexpression of LKB1 in HeLa cancer cells prevented metformin-triggered apoptosis while LKB1 knockdown significantly increased apoptosis in HEC-1-A and KLE cancer cells. Taken together, these findings indicate an underlying biological/physiological molecular function specifically for metformin-triggered apoptosis dependent on the presence of the LKB1 gene in tumorigenesis.

Keywords

Acknowledgement

This study was partially supported by a grant from the National Cancer Center (NCC-0810410-3), BK21 FOUR program, the Basic Science Research Program, through the National Research Foundation (NRF) of Korea (NRF-2020R1A2C3004973, NRF-2018R1A5A2023127, NRF-2020M3E5E2038356), and Global PhD. Fellowship through the NRF of Korea (NRF-2018H1A2A1061990). We would like to thank Dr. Richard Yoo (University of Michigan at Ann Arbor, USA) for critically reading of the manuscript.

References

  1. Algire, C., Zakikhani, M., Blouin, M. J., Shuai, J. H. and Pollak, M. (2008) Metformin attenuates the stimulatory effect of a high-energy diet on in vivo LLC1 carcinoma growth. Endocr. Relat. Cancer 15, 833-839. https://doi.org/10.1677/ERC-08-0038
  2. Barriere, G., Tartary, M. and Rigaud, M. (2013) Metformin: a rising star to fight the epithelial mesenchymal transition in oncology. Anticancer Agents Med. Chem. 13, 333-340. https://doi.org/10.2174/1871520611313020018
  3. Ben Sahra, I., Laurent, K., Loubat, A., Giorgetti-Peraldi, S., Colosetti, P., Auberger, P., Tanti, J. F., Le Marchand-Brustel, Y. and Bost, F. (2008) The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27, 3576-3586. https://doi.org/10.1038/sj.onc.1211024
  4. Ben Sahra, I., Le Marchand-Brustel, Y., Tanti, J. F. and Bost, F. (2010) Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol. Cancer Ther. 9, 1092-1099. https://doi.org/10.1158/1535-7163.MCT-09-1186
  5. Brancher, S., Stoer, N. C., Weiderpass, E., Damhuis, R. A., Johannesen, T. B., Botteri, E. and Strand, T. E. (2021) Metformin use and lung cancer survival: a population-based study in Norway. Br. J. Cancer 124, 1018-1025. https://doi.org/10.1038/s41416-020-01186-9
  6. Buzzai, M., Jones, R. G., Amaravadi, R. K., Lum, J. J., DeBerardinis, R. J., Zhao, F., Viollet, B. and Thompson, C. B. (2007) Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745-6752. https://doi.org/10.1158/0008-5472.CAN-06-4447
  7. Byun, H. J., Kim, B. R., Yoo, R., Park, S. Y. and Rho, S. B. (2012) sMEK1 enhances gemcitabine anti-cancer activity through inhibition of phosphorylation of Akt/mTOR. Apoptosis 17, 1095-1103. https://doi.org/10.1007/s10495-012-0751-0
  8. Chen, X., Li, K. and Zhao, G. (2018) propofol inhibits hela cells by impairing autophagic flux via AMP-activated protein kinase (AMPK) activation and endoplasmic reticulum stress regulated by calcium. Med. Sci. Monit. 24, 2339-2349. https://doi.org/10.12659/MSM.909144
  9. Dowling, R. J., Zakikhani, M., Fantus, I. G., Pollak, M. and Sonenberg, N. (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 67, 10804-10812. https://doi.org/10.1158/0008-5472.CAN-07-2310
  10. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. and Morris, A. D. (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304-1305. https://doi.org/10.1136/bmj.38415.708634.f7
  11. Fasih, A., Elbaz, H. A., Huttemann, M., Konski, A. A. and Zielske, S. P. (2014) Radiosensitization of pancreatic cancer cells by metformin through the AMPK pathway. Radiat. Res. 182, 50-59. https://doi.org/10.1667/rr13568.1
  12. Fogarty, S., Ross, F. A., Vara Ciruelos, D., Gray, A., Gowans, G. J. and Hardie, D. G. (2016) AMPK causes cell cycle arrest in LKB1-deficient cells via activation of CAMKK2. Mol. Cancer Res. 14, 683-695. https://doi.org/10.1158/1541-7786.MCR-15-0479
  13. Garcia, D. and Shaw, R. J. (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66, 789-800. https://doi.org/10.1016/j.molcel.2017.05.032
  14. Gotlieb, W. H., Saumet, J., Beauchamp, M. C., Gu, J., Lau, S., Pollak, M. N. and Bruchim, I. (2008) In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol. Oncol. 110, 246-250. https://doi.org/10.1016/j.ygyno.2008.04.008
  15. Gou, S., Cui, P., Li, X., Shi, P., Liu, T. and Wang, C. (2013) Low concentrations of metformin selectively inhibit CD133(+) cell proliferation in pancreatic cancer and have anticancer action. PLoS ONE 8, e63969. https://doi.org/10.1371/journal.pone.0063969
  16. Green, A. S., Chapuis, N., Lacombe, C., Mayeux, P., Bouscary, D. and Tamburini, J. (2011) LKB1/AMPK/mTOR signaling pathway in hematological malignancies: from metabolism to cancer cell biology. Cell Cycle 10, 2115-2120. https://doi.org/10.4161/cc.10.13.16244
  17. Hardie, D. G. (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 25, 1895-1908. https://doi.org/10.1101/gad.17420111
  18. Herrero-Martin, G., Hoyer-Hansen, M., Garcia-Garcia, C., Fumarola, C., Farkas, T., Lopez-Rivas, A. and Jaattela, M. (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 28, 677-685. https://doi.org/10.1038/emboj.2009.8
  19. Kang, G. J., Park, M. K., Byun, H. J., Kim, H. J., Kim, E. J., Yu, L., Kim, B., Shim, J. G., Lee, H. and Lee, C. H. (2020) SARNP, a participant in mRNA splicing and export, negatively regulates E-cadherin expression via interaction with pinin. J. Cell. Physiol. 235, 1543-1555. https://doi.org/10.1002/jcp.29073
  20. Kang, S., Dong, S. M., Kim, B. R., Park, M. S., Trink, B., Byun, H. J. and Rho, S. B. (2012) Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 17, 989-997. https://doi.org/10.1007/s10495-012-0717-2
  21. Lee, B. B., Kim, Y., Kim, D., Cho, E. Y., Han, J., Kim, H. K., Shim, Y. M. and Kim, D. H. (2019) Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 downregulation in non-small cell lung cancer cells. J. Cell. Mol. Med. 23, 2872-2889. https://doi.org/10.1111/jcmm.14194
  22. Lei, Y., Yi, Y., Liu, Y., Liu, X., Keller, E. T., Qian, C. N., Zhang, J. and Lu, Y. (2017) Metformin targets multiple signaling pathways in cancer. Chin. J. Cancer 36, 17. https://doi.org/10.1186/s40880-017-0184-9
  23. Lengyel, E., Litchfield, L. M., Mitra, A. K., Nieman, K. M., Mukherjee, A., Zhang, Y., Johnson, A., Bradaric, M., Lee, W. and Romero, I. L. (2015) Metformin inhibits ovarian cancer growth and increases sensitivity to paclitaxel in mouse models. Am. J. Obstet. Gynecol. 212, 479.e1-479.e10.
  24. Li, J., Zhong, L., Wang, F. and Zhu, H. (2017) Dissecting the role of AMP-activated protein kinase in human diseases. Acta Pharm. Sin. B 7, 249-259. https://doi.org/10.1016/j.apsb.2016.12.003
  25. Li, M., Li, X., Zhang, H. and Lu, Y. (2018) Molecular mechanisms of metformin for diabetes and cancer treatment. Front. Physiol. 9, 1039. https://doi.org/10.3389/fphys.2018.01039
  26. Liu, Y., Marks, K., Cowley, G. S., Carretero, J., Liu, Q., Nieland, T. J., Xu, C., Cohoon, T. J., Gao, P., Zhang, Y., Chen, Z., Altabef, A. B., Tchaicha, J. H., Wang, X., Choe, S., Driggers, E. M., Zhang, J., Bailey, S. T., Sharpless, N. E., Hayes, D. N., Patel, N. M., Janne, P. A., Bardeesy, N., Engelman, J. A., Manning, B. D., Shaw, R. J., Asara, J. M., Scully, R., Kimmelman, A., Byers, L. A., Gibbons, D. L., Wistuba, I. I., Heymach, J. V., Kwiatkowski, D. J., Kim, W. Y., Kung, A. L., Gray, N. S., Root, D. E., Cantley, L. C. and Wong, K. K. (2013) Metabolic and functional genomic studies identify deoxythymidylate kinase as a target in LKB1-mutant lung cancer. Cancer Discov. 3, 870-879. https://doi.org/10.1158/2159-8290.CD-13-0015
  27. Loubiere, C., Clavel, S., Gilleron, J., Harisseh, R., Fauconnier, J., BenSahra, I., Kaminski, L., Laurent, K., Herkenne, S., Lacas-Gervais, S., Ambrosetti, D., Alcor, D., Rocchi, S., Cormont, M., Michiels, J. F., Mari, B., Mazure, N. M., Scorrano, L., Lacampagne, A., Gharib, A., Tanti, J. F. and Bost, F. (2017) The energy disruptor metformin targets mitochondrial integrity via modification of calcium flux in cancer cells. Sci. Rep. 7, 5040. https://doi.org/10.1038/s41598-017-05052-2
  28. Mallik, R. and Chowdhury, T. A. (2018) Metformin in cancer. Diabetes Res. Clin. Pract. 143, 409-419. https://doi.org/10.1016/j.diabres.2018.05.023
  29. Nangia-Makker, P., Yu, Y., Vasudevan, A., Farhana, L., Rajendra, S. G., Levi, E. and Majumdar, A. P. (2014) Metformin: a potential therapeutic agent for recurrent colon cancer. PLoS ONE 9, e84369. https://doi.org/10.1371/journal.pone.0084369
  30. Qu, C., Zhang, W., Zheng, G., Zhang, Z., Yin, J. and He, Z. (2014) Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol. Cell. Biochem. 386, 63-71. https://doi.org/10.1007/s11010-013-1845-x
  31. Rho, S. B., Song, Y. J., Lim, M. C., Lee, S. H., Kim, B. R. and Park, S. Y. (2012) Programmed cell death 6 (PDCD6) inhibits angiogenesis through PI3K/mTOR/p70S6K pathway by interacting of VEG-FR-2. Cell. Signal. 24, 131-139. https://doi.org/10.1016/j.cellsig.2011.08.013
  32. Sanli, T., Rashid, A., Liu, C., Harding, S., Bristow, R. G., Cutz, J. C., Singh, G., Wright, J. and Tsakiridis, T. (2010) Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 78, 221-229. https://doi.org/10.1016/j.ijrobp.2010.03.005
  33. Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A. and Cantley, L. C. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. U.S.A. 101, 3329-3335. https://doi.org/10.1073/pnas.0308061100
  34. Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M. and Cantley, L. C. (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646. https://doi.org/10.1126/science.1120781
  35. Steinberg, G. R. and Kemp, B. E. (2009) AMPK in health and disease. Physiol. Rev. 89, 1025-1078. https://doi.org/10.1152/physrev.00011.2008
  36. Suh, D. H., Lee, S., Park, H. S. and Park, N. H. (2020) Medroxyprogesterone reverses tolerable dose metformin-induced inhibition of invasion via matrix metallopeptidase-9 and transforming growth factor-β1 in KLE endometrial cancer cells. J. Clin. Med. 9, 3585. https://doi.org/10.3390/jcm9113585
  37. Sun, Y., Connors, K. E. and Yang, D. Q. (2007) AICAR induces phosphorylation of AMPK in an ATM-dependent, LKB1-independent manner. Mol. Cell. Biochem. 306, 239-245. https://doi.org/10.1007/s11010-007-9575-6
  38. Towler, M. C. and Hardie, D. G. (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100, 328-341. https://doi.org/10.1161/01.RES.0000256090.42690.05
  39. Triggle, C. R. and Ding, H. (2017) Metformin is not just an antihyperglycaemic drug but also has protective effects on the vascular endothelium. Acta Physiol. 219, 138-151. https://doi.org/10.1111/apha.12644
  40. Uehara, T., Mitsuhashi, A., Tsuruoka, N. and Shozu, M. (2015) Metformin potentiates the anticancer effects of cisplatin under normoxic conditions in vitro. Oncol. Rep. 33, 744-750. https://doi.org/10.3892/or.2014.3611
  41. Vial, G., Detaille, D. and Guigas, B. (2019) Role of mitochondria in the mechanism(s) of action of metformin. Front. Endocrinol. 10, 294. https://doi.org/10.3389/fendo.2019.00294
  42. Wang, W. and Guan, K. L. (2009) AMP-activated protein kinase and cancer. Acta Physiol. 196, 55-63. https://doi.org/10.1111/j.1748-1716.2009.01980.x
  43. Whang, Y. M., Park, S. I., Trenary, I. A., Egnatchik, R. A., Fessel, J. P., Kaufman, J. M., Carbone, D. P. and Young, J. D. (2016) LKB1 deficiency enhances sensitivity to energetic stress induced by erlotinib treatment in non-small-cell lung cancer (NSCLC) cells. Oncogene 35, 856-866. https://doi.org/10.1038/onc.2015.140
  44. Xiao, X., He, Q., Lu, C., Werle, K. D., Zhao, R. X., Chen, J., Davis, B. C., Cui, R., Liang, J. and Xu, Z. X. (2012) Metformin impairs the growth of liver kinase B1-intact cervical cancer cells. Gynecol. Oncol. 127, 249-255. https://doi.org/10.1016/j.ygyno.2012.06.032
  45. Yuan, H. X., Xiong, Y. and Guan, K. L. (2013) Nutrient sensing, metabolism, and cell growth control. Mol. Cell 49, 379-387. https://doi.org/10.1016/j.molcel.2013.01.019
  46. Zakikhani, M., Dowling, R., Fantus, I. G., Sonenberg, N. and Pollak, M. (2006) Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269-10273. https://doi.org/10.1158/0008-5472.CAN-06-1500
  47. Zhang, J. and Snyder, S. H. (1992) Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 89, 9382-9385. https://doi.org/10.1073/pnas.89.20.9382
  48. Zhang, J., Xu, H., Zhou, X., Li, Y., Liu, T., Yin, X. and Zhang, B. (2017) Role of metformin in inhibiting estrogen-induced proliferation and regulating ERalpha and ERbeta expression in human endometrial cancer cells. Oncol. Lett. 14, 4949-4956. https://doi.org/10.3892/ol.2017.6877
  49. Zhang, Y., Storr, S. J., Johnson, K., Green, A. R., Rakha, E. A., Ellis, I. O., Morgan, D. A. and Martin, S. G. (2014) Involvement of metformin and AMPK in the radioresponse and prognosis of luminal versus basal-like breast cancer treated with radiotherapy. Oncotarget 5, 12936-12949. https://doi.org/10.18632/oncotarget.2683
  50. Zhao, D., Long, X. D., Lu, T. F., Wang, T., Zhang, W. W., Liu, Y. X., Cui, X. L., Dai, H. J., Xue, F. and Xia, Q. (2015) Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int. J. Cancer 136, 2556-2565. https://doi.org/10.1002/ijc.29305
  51. Zhu, Z., Jiang, T., Suo, H., Xu, S., Zhang, C., Ying, G. and Yan, Z. (2021) Metformin potentiates the effects of anlotinib in NSCLC via AMPK/mTOR and ROS-mediated signaling pathways. Front. Pharmacol. 12, 712181. https://doi.org/10.3389/fphar.2021.712181
  52. Zi, F. M., He, J. S., Li, Y., Wu, C., Yang, L., Yang, Y., Wang, L. J., He, D. H., Zhao, Y., Wu, W. J., Zheng, G. F., Han, X. Y., Huang, H., Yi, Q. and Cai, Z. (2015) Metformin displays anti-myeloma activity and synergistic effect with dexamethasone in in vitro and in vivo xenograft models. Cancer Lett. 356, 443-453. https://doi.org/10.1016/j.canlet.2014.09.050