DOI QR코드

DOI QR Code

Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling

  • Lee, Seung-On (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University) ;
  • Joo, Sang Hoon (College of Pharmacy, Daegu Catholic University) ;
  • Kwak, Ah-Won (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Lee, Mee-Hyun (College of Korean Medicine, Dongshin University) ;
  • Seo, Ji-Hye (Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University) ;
  • Cho, Seung-Sik (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Yoon, Goo (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Chae, Jung-Il (Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University) ;
  • Shim, Jung-Hyun (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University)
  • 투고 : 2021.08.31
  • 심사 : 2021.09.10
  • 발행 : 2021.11.01

초록

Podophyllotoxin (PT), a lignan compound from the roots and rhizomes of Podophyllum peltatum, has diverse pharmacological activities including anticancer effect in several types of cancer. The molecular mechanism of the anticancer effects of PT on colorectal cancer cells has not been reported yet. In this study, we sought to evaluate the anticancer effect of PT on human colorectal cancer HCT116 cells and identify the detailed molecular mechanism. PT inhibited the growth of cells and colony formation in a concentration-dependent manner and induced apoptosis as determined by the annexin V/7-aminoactinomycin D double staining assay. PT-induced apoptosis was accompanied by cell cycle arrest in the G2/M phase and an increase in the generation of reactive oxygen species (ROS). The effects of PT on the induction of ROS and apoptosis were prevented by pretreatment with N-acetyl-L-cysteine (NAC), indicating that an increase in ROS generation mediates the apoptosis of HCT116 cells induced by PT. Furthermore, Western blot analysis showed that PT upregulated the level of phospho (p)-p38 mitogen-activated protein kinase (MAPK). The treatment of SB203580, a p38 inhibitor, strongly prevented the apoptosis induced by PT, suggesting that PT-induced apoptosis involved the p38 MAPK signaling pathway. In addition, PT induced the loss of mitochondrial membrane potential and multi-caspase activation. The results suggested that PT induced cell cycle arrest in the G2/M phase and apoptosis through the p38 MAPK signaling pathway by upregulating ROS in HCT116 cells.

키워드

과제정보

We greatly appreciated using the Convergence Research Laboratory (established by the MNU Innovation Support Project in 2019) to conduct this research. This research was funded by the Basic Science Research Program of National Research Foundation Korea, grant number 2019R1A2C1005899.

참고문헌

  1. Bai, J., Li, Y. and Zhang, G. (2017) Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med. 14, 348-362. https://doi.org/10.20892/j.issn.2095-3941.2017.0033
  2. Canel, C., Moraes, R. M., Dayan, F. E. and Ferreira, D. (2000) Podophyllotoxin. Phytochemistry 54, 115-120. https://doi.org/10.1016/S0031-9422(00)00094-7
  3. Chae, I. G., Song, N. Y., Kim, D. H., Lee, M. Y., Park, J. M. and Chun, K. S. (2020) Thymoquinone induces apoptosis of human renal carcinoma Caki-1 cells by inhibiting JAK2/STAT3 through pro-oxidant effect. Food Chem. Toxicol. 139, 111253. https://doi.org/10.1016/j.fct.2020.111253
  4. Chattopadhyay, S., Bisaria, V. S., Panda, A. K. and Srivastava, A. K. (2004) Cytotoxicity of in vitro produced podophyllotoxin from Podophyllum hexandrum on human cancer cell line. Nat. Prod. Res. 18, 51-57. https://doi.org/10.1080/1057563031000122095
  5. Chio, I. I. C. and Tuveson, D. A. (2017) ROS in cancer: the burning question. Trends Mol. Med. 23, 411-429. https://doi.org/10.1016/j.molmed.2017.03.004
  6. Choi, B. H., Kim, J. M. and Kwak, M. K. (2021) The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch. Pharm. Res. 44, 263-280. https://doi.org/10.1007/s12272-021-01316-8
  7. Chun, K. S., Jang, J. H. and Kim, D. H. (2020) Perspectives regarding the intersections between STAT3 and oxidative metabolism in cancer. Cells 9, 2202. https://doi.org/10.3390/cells9102202
  8. Craig, C., Wersto, R., Kim, M., Ohri, E., Li, Z., Katayose, D., Lee, S. J., Trepel, J., Cowan, K. and Seth, P. (1997) A recombinant adenovirus expressing p27Kip1 induces cell cycle arrest and loss of cyclin-Cdk activity in human breast cancer cells. Oncogene 14, 2283-2289. https://doi.org/10.1038/sj/onc/1201064
  9. Darling, N. J. and Cook, S. J. (2014) The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim. Biophys. Acta 1843, 2150-2163. https://doi.org/10.1016/j.bbamcr.2014.01.009
  10. Dash, B. C. and El-Deiry, W. S. (2005) Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol. Cell. Biol. 25, 3364-3387. https://doi.org/10.1128/MCB.25.8.3364-3387.2005
  11. Deng, X., Ruvolo, P., Carr, B. and May, W. S., Jr. (2000) Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bcl2 kinases. Proc. Natl. Acad. Sci. U.S.A. 97, 1578-1583. https://doi.org/10.1073/pnas.97.4.1578
  12. Hande, K. R. (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer 34, 1514-1521. https://doi.org/10.1016/S0959-8049(98)00228-7
  13. Hu, H., Tian, M., Ding, C. and Yu, S. (2019) The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front. Immunol. 9, 3083. https://doi.org/10.3389/fimmu.2018.03083
  14. Hu, L. L., Liao, B. Y., Wei, J. X., Ling, Y. L., Wei, Y. X., Liu, Z. L., Luo, X. Q. and Wang, J. L. (2020) Podophyllotoxin exposure causes spindle defects and DNA damage-induced apoptosis in mouse fertilized oocytes and early embryos. Front. Cell Dev. Biol. 8, 600521. https://doi.org/10.3389/fcell.2020.600521
  15. Khan, K. H., Blanco-Codesido, M. and Molife, L. R. (2014) Cancer therapeutics: targeting the apoptotic pathway. Crit. Rev. Oncol. Hematol. 90, 200-219. https://doi.org/10.1016/j.critrevonc.2013.12.012
  16. Kim, T. W., Hong, D. W. and Hong, S. H. (2020) CB13, a novel PPARgamma ligand, overcomes radio-resistance via ROS generation and ER stress in human non-small cell lung cancer. Cell Death Dis. 11, 848. https://doi.org/10.1038/s41419-020-03065-w
  17. Ko, Y. H., Kim, S. K., Kwon, S. H., Seo, J. Y., Lee, B. R., Kim, Y. J., Hur, K. H., Kim, S. Y., Lee, S. Y. and Jang, C. G. (2019) 7,8,4'-Trihydroxyisoflavone, a metabolized product of daidzein, attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Biomol. Ther. (Seoul) 27, 363-372. https://doi.org/10.4062/biomolther.2018.211
  18. Lee, Y. J., Kim, W. I., Kim, S. Y., Cho, S. W., Nam, H. S., Lee, S. H. and Cho, M. K. (2019) Flavonoid morin inhibits proliferation and induces apoptosis of melanoma cells by regulating reactive oxygen species, Sp1 and Mcl-1. Arch. Pharm. Res. 42, 531-542. https://doi.org/10.1007/s12272-019-01158-5
  19. Li, A. X., Sun, M. and Li, X. (2017) Withaferin-A induces apoptosis in osteosarcoma U2OS cell line via generation of ROS and disruption of mitochondrial membrane potential. Eur. Rev. Med. Pharmacol. Sci. 21, 1368-1374.
  20. Liou, G. Y. and Storz, P. (2010) Reactive oxygen species in cancer. Free Radic. Res. 44, 479-496. https://doi.org/10.3109/10715761003667554
  21. Liu, B., Tan, X., Liang, J., Wu, S., Liu, J., Zhang, Q. and Zhu, R. (2014) A reduction in reactive oxygen species contributes to dihydromyricetin-induced apoptosis in human hepatocellular carcinoma cells. Sci. Rep. 4, 7041. https://doi.org/10.1038/srep07041
  22. Martindale, J. L. and Holbrook, N. J. (2002) Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol. 192, 1-15. https://doi.org/10.1002/jcp.10119
  23. Moradi Marjaneh, R., Hassanian, S. M., Ghobadi, N., Ferns, G. A., Karimi, A., Jazayeri, M. H., Nasiri, M., Avan, A. and Khazaei, M. (2018) Targeting the death receptor signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J. Cell. Physiol. 233, 6538-6549. https://doi.org/10.1002/jcp.26640
  24. Nogueira, V. and Hay, N. (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 19, 4309-4314. https://doi.org/10.1158/1078-0432.CCR-12-1424
  25. Oh, H. N., Kwak, A. W., Lee, M. H., Kim, E., Yoon, G., Cho, S. S., Liu, K., Chae, J. I. and Shim, J. H. (2021) Targeted inhibition of cMET by podophyllotoxin promotes caspase-dependent apoptosis and suppresses cell growth in gefitinib-resistant non-small cell lung cancer cells. Phytomedicine 80, 153355. https://doi.org/10.1016/j.phymed.2020.153355
  26. Osone, S., Hosoi, H., Kuwahara, Y., Matsumoto, Y., Iehara, T. and Sugimoto, T. (2004) Fenretinide induces sustained-activation of JNK/p38 MAPK and apoptosis in a reactive oxygen species-dependent manner in neuroblastoma cells. Int. J. Cancer 112, 219-224. https://doi.org/10.1002/ijc.20412
  27. Qiao, L. and Wong, B. C. (2009) Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist. Updat. 12, 55-64. https://doi.org/10.1016/j.drup.2009.02.002
  28. Reed, J. C., Cuddy, M., Slabiak, T., Croce, C. M. and Nowell, P. C. (1988) Oncogenic potential of bcl-2 demonstrated by gene transfer. Nature 336, 259-261. https://doi.org/10.1038/336259a0
  29. Richa, S., Dey, P., Park, C., Yang, J., Son, J. Y., Park, J. H., Lee, S. H., Ahn, M. Y., Kim, I. S., Moon, H. R. and Kim, H. S. (2020) A new histone deacetylase inhibitor, MHY4381, induces apoptosis via generation of reactive oxygen species in human prostate cancer cells. Biomol. Ther. (Seoul) 28, 184-194. https://doi.org/10.4062/biomolther.2019.074
  30. Sathish, M., Kavitha, B., Nayak, V. L., Tangella, Y., Ajitha, A., Nekkanti, S., Alarifi, A., Shankaraiah, N., Nagesh, N. and Kamal, A. (2018) Synthesis of podophyllotoxin linked beta-carboline congeners as potential anticancer agents and DNA topoisomerase II inhibitors. Eur. J. Med. Chem. 144, 557-571. https://doi.org/10.1016/j.ejmech.2017.12.055
  31. Schieber, M. and Chandel, N. S. (2014) ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453-R462. https://doi.org/10.1016/j.cub.2014.03.034
  32. Shah, Z., Gohar, U. F., Jamshed, I., Mushtaq, A., Mukhtar, H., ZiaUi-Haq, M., Toma, S. I., Manea, R., Moga, M. and Popovici, B. (2021) Podophyllotoxin: history, recent advances and future prospects. Biomolecules 11, 603. https://doi.org/10.3390/biom11040603
  33. Shang, Z. F., Tan, W., Liu, X. D., Yu, L., Li, B., Li, M., Song, M., Wang, Y., Xiao, B. B., Zhong, C. G., Guan, H. and Zhou, P. K. (2015) DNA-PKcs negatively regulates cyclin B1 protein stability through facilitating its ubiquitination mediated by Cdh1-APC/C pathway. Int. J. Biol. Sci. 11, 1026-1035. https://doi.org/10.7150/ijbs.12443
  34. Siegel, R. L., Miller, K. D. and Jemal, A. (2020) Cancer statistics, 2020. CA Cancer J. Clin. 70, 7-30. https://doi.org/10.3322/caac.21590
  35. Son, Y., Cheong, Y. K., Kim, N. H., Chung, H. T., Kang, D. G. and Pae, H. O. (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J. Signal Transduct. 2011, 792639. https://doi.org/10.1155/2011/792639
  36. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249. https://doi.org/10.3322/caac.21660
  37. Van Opdenbosch, N. and Lamkanfi, M. (2019) Caspases in cell death, inflammation, and disease. Immunity 50, 1352-1364. https://doi.org/10.1016/j.immuni.2019.05.020
  38. Wagner, E. F. and Nebreda, A. R. (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9, 537-549. https://doi.org/10.1038/nrc2694
  39. Wang, H., Jiang, D., Liu, J., Ye, S., Xiao, S., Wang, W., Sun, Z., Xie, Y. and Wang, J. (2013) Compound K induces apoptosis of bladder cancer T24 cells via reactive oxygen species-mediated p38 MAPK pathway. Cancer Biother. Radiopharm. 28, 607-614. https://doi.org/10.1089/cbr.2012.1468
  40. Weyemi, U., Caillou, B., Talbot, M., Ameziane-El-Hassani, R., Lacroix, L., Lagent-Chevallier, O., Al Ghuzlan, A., Roos, D., Bidart, J. M., Virion, A., Schlumberger, M. and Dupuy, C. (2010) Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues. Endocr. Relat. Cancer 17, 27-37. https://doi.org/10.1677/ERC-09-0175
  41. Wong, R. S. (2011) Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30, 87. https://doi.org/10.1186/1756-9966-30-87
  42. Xie, Y. H., Chen, Y. X. and Fang, J. Y. (2020) Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 5, 22. https://doi.org/10.1038/s41392-020-0116-z
  43. Yu, X., Che, Z. and Xu, H. (2017) Recent advances in the chemistry and biology of podophyllotoxins. Chemistry 23, 4467-4526. https://doi.org/10.1002/chem.201602472
  44. Zeeshan, H. M., Lee, G. H., Kim, H. R. and Chae, H. J. (2016) Endoplasmic reticulum stress and associated ROS. Int. J. Mol. Sci. 17, 327. https://doi.org/10.3390/ijms17030327
  45. Zhang, W., Liu, C., Li, J., Liu, R., Zhuang, J., Feng, F., Yao, Y. and Sun, C. (2020) Target analysis and mechanism of podophyllotoxin in the treatment of triple-negative breast cancer. Front. Pharmacol. 11, 1211. https://doi.org/10.3389/fphar.2020.01211
  46. Zhang, X. Y., Ni, J. M. and Qiao, H. (2006) Studies on antitumor effects of podophyllotoxin nanoliposome. Zhongguo Zhong Yao Za Zhi 31, 148-150.
  47. Zhao, Y., Yan, Y., Zhao, Z., Li, S. and Yin, J. (2015) The dynamic changes of endoplasmic reticulum stress pathway markers GRP78 and CHOP in the hippocampus of diabetic mice. Brain Res. Bull. 111, 27-35. https://doi.org/10.1016/j.brainresbull.2014.12.006