DOI QR코드

DOI QR Code

Lipid Metabolism, Disorders and Therapeutic Drugs - Review

  • Natesan, Vijayakumar (Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University) ;
  • Kim, Sung-Jin (Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University)
  • Received : 2021.07.19
  • Accepted : 2021.10.01
  • Published : 2021.11.01

Abstract

Different lifestyles have an impact on useful metabolic functions, causing disorders. Different lipids are involved in the metabolic functions that play various vital roles in the body, such as structural components, storage of energy, in signaling, as biomarkers, in energy metabolism, and as hormones. Inter-related disorders are caused when these functions are affected, like diabetes, cancer, infections, and inflammatory and neurodegenerative conditions in humans. During the Covid-19 period, there has been a lot of focus on the effects of metabolic disorders all over the world. Hence, this review collectively reports on research concerning metabolic disorders, mainly cardiovascular and diabetes mellitus. In addition, drug research in lipid metabolism disorders have also been considered. This review explores lipids, metabolism, lipid metabolism disorders, and drugs used for these disorders.

Keywords

References

  1. Ahmed, S., Shah, P. and Ahmed, O. (2021) Biochemistry, lipids. In: StatPearls, pp. 11-19. StatPearls Publishing, Treasure Island.
  2. Alves-Bezerra, M. and Cohen, D. E. (2017) Triglyceride metabolism in the liver. Compr. Physiol. 8, 1-8.
  3. Alwarawrah, Y., Hughes, P., Loiselle, D., Carlson, D. A., Darr, D. B., Jordan, J. L., Xiong, J., Hunter, L. M., Dubois, L. G., Thompson, J. W., Kulkarni, M. M., Ratcliff, A. N., Kwiek, J. J. and Haystead, T. A. (2016) Fasnall, a selective FASN inhibitor, shows potent anti-tumor activity in the MMTV-Neu model of HER2(+) breast cancer. Cell Chem. Biol. 23, 678-688. https://doi.org/10.1016/j.chembiol.2016.04.011
  4. Amalan, V. and Vijayakumar, N. (2015) Antihyperglycemic effect of p-coumaric acid on streptozotocin induced diabetic rats. Indian J. Appl. Res. 5, 10-13.
  5. Amalan, V., Vijayakumar, N. and Ramakrishnan, A. (2015) P-Coumaric acid regulates blood glucose and antioxidant levels in streptozotocin induced diabetic rats. J. Chem. Pharm. Res. 7, 831-839.
  6. Arslan, N. (2014) Obesity, fatty liver disease and intestinal microbiota. World J. Gastroenterol. 44, 16452-16463. https://doi.org/10.3748/wjg.v20.i44.16452
  7. Arumugam, R. and Natesan, V. (2017) Urea cycle pathway targeted therapeutic action of naringin against ammonium chloride induced hyperammonemic rats. Biomed. Pharmacother. 94, 1028-1037. https://doi.org/10.1016/j.biopha.2017.08.028
  8. Athenstaedt, K. and Daum, G. (2006) The life cycle of neutral lipids: synthesis, storage and degradation. Cell. Mol. Life Sci. 63, 1355-1369. https://doi.org/10.1007/s00018-006-6016-8
  9. Azhar, S. (2010) Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease. Future Cardiol. 6, 657-691. https://doi.org/10.2217/fca.10.86
  10. Bagger, Y. Z., Tanko, L. B., Alexandersen, P., Qin, G. and Christiansen, C.; Prospective epidemiological risk factors study group (2006) Radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J. Intern. Med. 259, 598-605. https://doi.org/10.1111/j.1365-2796.2006.01640.x
  11. Bazinet, R. P. and Laye, S. (2014) Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 15, 771-785. https://doi.org/10.1038/nrn3820
  12. Blom, D. J., Hala, T., Bolognese, M., Lillestol, M. J., Toth, P. D., Burgess, L., Ceska, R., Roth, E., Koren, M. J., Ballantyne, C. M., Monsalvo, M. L., Tsirtsonis, K., Kim, J. B., Scott, R., Wasserman, S. M. and Stein, E. A.; DESCARTES Investigators (2014) A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N. Engl J. Med. 370, 1809-1819. https://doi.org/10.1056/NEJMoa1316222
  13. Burdon, K. P., Langefeld, C. D., Beck, S. R., Wagenknecht, L. E., Carr, J. J., Freedman, B. I., Herrington, D. and Bowden, D. W. (2005) Association of genes of lipid metabolism with measures of subclinical cardiovascular disease in the Diabetes Heart Study. J. Med. Genet. 42, 720-724. https://doi.org/10.1136/jmg.2004.029850
  14. Butte, N. F. (2000) Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am. J. Clin. Nutr. 71, 1256S-1261S. https://doi.org/10.1093/ajcn/71.5.1256s
  15. Cani, P. D., Delzenne, N. M., Amar, J. and Burcelin, R. (2008) Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathol. Biol. 56, 305-309. https://doi.org/10.1016/j.patbio.2007.09.008
  16. Cannon, C. P., Braunwald, E., McCabe, C. H., Rader, D. J., Rouleau, J. L., Belder, R., Joyal, S. V., Hill, K. A., Pfeffer, M. A. and Skene, A. M.; Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 Investigators (2004) Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N. Engl. J. Med. 350, 1495-1504. https://doi.org/10.1056/NEJMoa040583
  17. Castle, J. C., Hara, Y., Raymond, C. K., Garrett-Engele, P., Ohwaki, K., Kan, Z., Kusunoki, J. and Johnson, J. M. (2009) ACC2 is expressed at high levels in human white adipose and has an isoform with a novel N-terminus. PLoS ONE 4, e4369. https://doi.org/10.1371/journal.pone.0004369
  18. Catapano, A. L., Reiner, Z., De Backer, G., Graham, I., Taskinen, M. R., Wiklund, O., Agewall, S., Alegria, E., Chapman, M., Durrington, P., Erdine, S., Halcox, J., Hobbs, R., Kjekshus, J., Filardi, P. P., Riccardi, G., Storey, R. F. and Wood, D.; European Society of Cardiology (ESC); European Atherosclerosis Society (EAS) (2011) ESC/EAS guidelines for the management of dyslipidaemias. The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis 217, 3-46. https://doi.org/10.1016/j.atherosclerosis.2011.06.028
  19. Cena, H. and Calder, P. C. (2020) Defining a healthy diet: evidence for the role of contemporary dietary patterns in health and disease. Nutrients 12, 334. https://doi.org/10.3390/nu12020334
  20. Chaudhury, A., Duvoor, C., Reddy Dendi, V. S., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N. S., Montales, M. T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C. K., Lohani, G. P. and Mirza, W. (2017) Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front. Endocrinol. 8, 6.
  21. Church, C., Horowitz, M. and Rodeheffer, M. (2012) WAT is a functional adipocyte? Adipocyte 1, 38-45. https://doi.org/10.4161/adip.19132
  22. Coppens, I., Asai, T. and Tomavo, S. (2014) Chapter 8 - Biochemistry and metabolism of Toxoplasma gondii: carbohydrates, lipids and nucleotides. In Toxoplasma Gondii (2nd ed.) (L. M. Weiss and K. Kim, Eds.), pp. 257-295. Academic Press.
  23. Denisenko, Y. K., Kytikova, O. Y., Novgorodtseva, T. P., Antonyuk, M. V., Gvozdenko, T. A. and Kantur, T. A. (2020) Lipid-induced mechanisms of metabolic syndrome. J. Obes. 2020, 5762395.
  24. Di Mauro, S., Trevisan, C. and Hays, A. (1980) Disorders of lipid metabolism in muscle. Muscle Nerve 3, 369-388. https://doi.org/10.1002/mus.880030502
  25. Dias, S., Paredes, S. and Ribeiro, L. (2018) Drugs involved in dyslipidemia and obesity treatment: focus on adipose tissue. Int. J. Endocrinol. 4, 2637418.
  26. Dibaise, J. K., Zhang, H., Crowell, M. D., Krajmalnik-Brown, R., Decker, G. A. and Rittmann, B. E. (2008) Gut microbiota and its possible relationship with obesity. Mayo Clin. Proc. 4, 460-469.
  27. Dogan, E. S. K., Dogan, B., Fentoglu, O. and Kirzioglu, F. Y. (2019) The role of serum lipoxin A4 levels in the association between periodontal disease and metabolic syndrome. J. Periodontal Implant Sci. 49, 105-113. https://doi.org/10.5051/jpis.2019.49.2.105
  28. Estruch, R., Ros, E., Salas-Salvado, J., Covas, M. I., Corella, D., Aros, F., Gomez-Gracia, E., Ruiz-Gutierrez, V., Fiol, M., Lapetra, J., Lamuela-Raventos, R. M., Serra-Majem, L., Pinto, X., Basora, J., Munoz, M. A., Sorli, J. V., Martinez, J. A., and Martinez-Gonzalez, M. A. (2013) Primary prevention of cardiovascular disease with a mediterranean diet. N Engl J Med 368,1279-1290. https://doi.org/10.1056/NEJMoa1200303
  29. Fahy, E., Cotter, D., Sud, M. and Subramaniam, S. (2011) Lipid classification, structures and tools. Biochim. Biophy. Acta 1811, 637-647. https://doi.org/10.1016/j.bbalip.2011.06.009
  30. Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H., Jr., Murphy, R. C., Russell, D. W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M. S., White, S. H., Witztum, J. L. and Dennis, E. A. (2005) A comprehensive classification system for lipids. J. Lipid Res. 46, 839-861. https://doi.org/10.1194/jlr.E400004-JLR200
  31. Fernandez, L. P., Gomez, de Cedron, M., Ramirez de Molina, A. (2020) Alterations of lipid metabolism in cancer: implications in prognosis and treatment. Front. Oncol. 10, 577420. https://doi.org/10.3389/fonc.2020.577420
  32. Frayn, K. N., Coppack, S. W., Humphreys, S. M., Clark, M. L. and Evans, R. D. (1993) Periprandial regulation of lipid metabolism in insulin-treated diabetes mellitus. Metabolism 42, 504-510. https://doi.org/10.1016/0026-0495(93)90110-A
  33. Fredrickson, D. S. and Lees, R. S. (1965) Editorial: a system for phenotyping hyperlipoproteinemia. Circulation 31, 321-327. https://doi.org/10.1161/01.CIR.31.3.321
  34. Garcia, M., Mulvagh, S. L., Bairey Merz, C. N., Buring, J. E. and Manson, J. E. (2016) Cardiovascular disease in women: clinical perspectives. Circ. Res. 118, 1273-1293. https://doi.org/10.1161/CIRCRESAHA.116.307547
  35. Glass, C. K. and Olefsky, J. M. (2012) Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 15, 635-645. https://doi.org/10.1016/j.cmet.2012.04.001
  36. Goldberg, I. J., Trent, C. M. and Schulze, P. C. (2012) Lipid metabolism and toxicity in the heart. Cell Metab. 15, 805-812. https://doi.org/10.1016/j.cmet.2012.04.006
  37. Grundy, S. M. (2009) Advancing drug therapy of the metabolic syndrome. Nat. Rev. Drug Discov. 8, 341. https://doi.org/10.1038/nrd2894
  38. Hegele, R. A., Ginsberg, H. N., Chapman, M. J., Nordestgaard, B. G., Kuivenhoven, J. A., Averna, M., Boren, J., Bruckert, E., Catapano, A. L., Descamps, O. S., Hovingh, G. K., Humphries, S. E., Kovanen, P. T., Masana, L., Pajukanta, P., Parhofer, K. G., Raal, F. J., Ray, K. K., Santos, R. D., Stalenhoef, A. F., Stroes, E., Taskinen, M. R., Tybjaerg-Hansen, A., Watts, G. F. and Wiklund, O.; European Atherosclerosis Society Consensus Panel (2014) The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2, 655-666. https://doi.org/10.1016/S2213-8587(13)70191-8
  39. Huang, C. and Freter, C. (2015) Lipid metabolism, apoptosis and cancer therapy. Int. J. Mol. Sci. 16, 924-949. https://doi.org/10.3390/ijms16010924
  40. Huang, J., Borensztajn, J. and Reddy, J. K. (2011) Hepatic lipid metabolism. In: Molecular Pathology of Liver Diseases. Molecular Pathology Library, Vol. 5 (S. Monga, Ed.), pp. 133-146. Springer, Boston.
  41. Hur, K. Y. and Lee, M. (2015) Gut microbiota and metabolic disorders. Diabetes Metab. J. 39, 198-203. https://doi.org/10.4093/dmj.2015.39.3.198
  42. Joynt, K. E., Whellan, D. J. and Oconnor, C. M. (2003) Depression and cardiovascular disease: mechanisms of interaction. Biol. Psychiatry 54, 248-261. https://doi.org/10.1016/S0006-3223(03)00568-7
  43. Knopp, R. H. (1999) Drug treatment of lipid disorders. N. Engl. J. Med. 341, 498-511. https://doi.org/10.1056/NEJM199908123410707
  44. Kromhout, D., Giltay, E. J. and Geleijnse, J. M.; Alpha Omega Trial Group (2010) n-3 fatty acids and cardiovascular events after myocardial infarction. N. Engl. J. Med. 363, 2015-2026. https://doi.org/10.1056/NEJMoa1003603
  45. Lark, D. S., Fisher-Wellman, K. H. and Neufer, P. D. (2012) High-fat load: mechanism(s) of insulin resistance in skeletal muscle. Int. J. Obes. Suppl. 2, S31-S36. https://doi.org/10.1038/ijosup.2012.20
  46. Lattimer, J. M. and Haub, M. D. (2010) Effects of dietary fiber and its components on metabolic health. Nutrients 2, 1266-1289. https://doi.org/10.3390/nu2121266
  47. Lee, C. H., Olson, P. and Evans, R. M. (2003) Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144, 2201-2207. https://doi.org/10.1210/en.2003-0288
  48. Lesniak, W., Bala, M. M., Placzkiewicz-Jankowska, E., Topor-Madry, R., Jankowski, M., Sieradzki, J. and Banasiak, W.; ARETAEUS2 Study Group (2015) Cardiovascular risk management in type 2 diabetes of more than 10-year duration: Results of Polish ARETAEUS2-Grupa Study. Cardiol. J. 22, 150-159. https://doi.org/10.5603/CJ.a2014.0067
  49. Malhotra, A., Shafiq, N., Arora, A., Singh, M., Kumar, R. and Malhotra, S. (2014) Dietary interventions (plant sterols, stanols, omega-3 fatty acids, soy protein and dietary fibers) for familial hypercholesterolaemia. Cochrane Database Syst. Rev. 2014, CD001918.
  50. McGowan, M. P., Hosseini Dehkordi, S. H., Moriarty, P. M. and Duell, P. B. (2019) Diagnosis and treatment of heterozygous familial hypercholesterolemia. J. Am. Heart Assoc. 8, e013225. https://doi.org/10.1161/JAHA.119.013225
  51. Monnerie, S., Comte, B., Ziegler, D., Morais, J. A., Pujos- Guillot, E. and Gaudreau, P. (2020) Metabolomic and lipidomic signatures of metabolic syndrome and its physiological components in adults: a systematic review. Sci. Rep. 10, 669. https://doi.org/10.1038/s41598-019-56909-7
  52. Musso, G., Cassader, M., Paschetta, E. and Gambino, R. (2018) Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology 155, 282-302.e8. https://doi.org/10.1053/j.gastro.2018.06.031
  53. Nagy, K. and Tiuca, I.-D. (2017) Importance of fatty acids in physiopathology of human body. In Fatty Acids. IntechOpen. doi: 10.5772/67407.
  54. Natesan, V. and Kim, S. J. (2021) Diabetic nephropathy - a review of risk factors, progression, mechanism, and dietary management. Biomol. Ther. (Seoul) 29, 365-372. https://doi.org/10.4062/biomolther.2020.204
  55. Nelson, R. H. (2013) Hyperlipidemia as a risk factor for cardiovascular disease. Prim. Care 40, 195-211. https://doi.org/10.1016/j.pop.2012.11.003
  56. Nilsson, P. M., Tuomilehto, J. and Ryden, L. (2019) The metabolic syndrome - what is it and how should it be managed? Eur. J. Prev. Cardiol. 26, 33-46. https://doi.org/10.1177/2047487318811694
  57. Novgorodtseva, T. P., Karaman, Y. K., Zhukova, N. V., Lobanova, E. G., Antonyuk, M. V. and Kantur, T. A. (2011) Composition of fatty acids in plasma and erythrocytes and eicosanoids level in patients with metabolic syndrome. Lipids Health Dis. 10, 82. https://doi.org/10.1186/1476-511X-10-82
  58. Ophardt, C. E. (2003) Overview of lipid function. In Virtual ChemBook. Elmhurst College. Available from: http://chemistry.elmhurst.edu/vchembook/620fattyacid.html/.
  59. Pahan, K. (2006) Lipid-lowering drugs. Cell. Mol. Life Sci. 63, 1165-1178. https://doi.org/10.1007/s00018-005-5406-7
  60. Parhofer, K. G. (2016) The treatment of disorders of lipid metabolism. Dtsch. Arztebl. Int. 113, 261-268.
  61. Pischon, T., Nothlings, U. and Boeing, H. (2008) Obesity and cancer. Proc. Nutr. Soc. 67, 128-145. https://doi.org/10.1017/S0029665108006976
  62. Quispe, R., Hendrani, A., Baradaran-Noveiry, B., Martin, S., Brown, E., Kulkarni, K., Banach, M., Toth, P. P., Brinton, E. A., Jones, S. R. and Joshi, P. (2019) Characterization of lipoprotein profiles in patients with hypertriglyceridemic Fredrickson-Levy and Lees dyslipidemia phenotypes: the Very Large Database of Lipids Studies 6 and 7. Arch. Med. Sci. 15, 1195-1202. https://doi.org/10.5114/aoms.2019.87207
  63. Raal, F. J., Giugliano, R. P., Sabatine, M. S., Koren, M. J., Langslet, G., Bays, H., Blom, D., Eriksson, M., Dent, R., Wasserman, S. M., Huang, F., Xue, A., Albizem, M., Scott, R. and Stein, E. A. (2014) Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J. Am. Coll. Cardiol. 63, 1278-1288. https://doi.org/10.1016/j.jacc.2014.01.006
  64. Ratnayake, W. M. N. and Galli, C. (2009) Fat and fatty acid terminology, methods of analysis and fat digestion and metabolism: a background review paper. Ann. Nutr. Metab. 55, 8-43. https://doi.org/10.1159/000228994
  65. Reckless, J. P. D. and Lawrence, J. M. (2003) Hyperlipidemia (hyperlipidaemia). In Encyclopedia of Food Sciences and Nutrition (2nd ed.), pp. 3183-3192. Academic Press.
  66. Rosca, M. G., Vazquez, E. J., Chen, Q., Kerner, J., Kern, T. S. and Hoppel, C. L. (2012) Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes 61, 2074-2083. https://doi.org/10.2337/db11-1437
  67. Rysman, E., Brusselmans, K., Scheys, K., Timmermans, L., Derua, R., Munck, S., Van Veldhoven, P. P., Waltregny, D., Daniels, V. W., Machiels, J., Vanderhoydonc, F., Smans, K., Waelkens, E., Verhoeven, G. and Swinnen, J. V. (2010) De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 70, 8117-8126. https://doi.org/10.1158/0008-5472.CAN-09-3871
  68. Saudek, C. D. and Eder, H. A. (1979) Lipid metabolism in diabetes mellitus. Am. J. Med. 66, 843-852. https://doi.org/10.1016/0002-9343(79)91126-4
  69. Schonfeld, G. (1990) Inherited disorders of lipid transport. Endocrinol. Metab. Clin. North Am. 19, 229-257. https://doi.org/10.1016/s0889-8529(18)30323-2
  70. Shattat, G. F. A. (2014) Review article on hyperlipidemia: types, treatments and new drug targets. Biomed. Pharmacol. J. 7, 399-409. https://doi.org/10.13005/bpj/504
  71. Solomon, M. and Muro, S. (2017) Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv. Drug Deliv. Rev. 118, 109-134. https://doi.org/10.1016/j.addr.2017.05.004
  72. Song, X., Zhong, L., Lyu, N., Liu, F., Li, B., Hao, Y., Xue, Y., Li, J., Feng, Y., Ma, Y., Hu, Y. and Zhu, B. (2019) Inulin can alleviate metabolism disorders in ob/ob mice by partially restoring leptin-related pathways mediated by gut microbiota. Genomics Proteomics Bioinformatics 17, 64-75. https://doi.org/10.1016/j.gpb.2019.03.001
  73. Sparrow, C. P., Burton, C. A., Hernandez, M., Mundt, S., Hassing, H., Patel, S., Rosa, R., Hermanowski-Vosatka, A., Wang, P. R., Zhang, D., Peterson, L., Detmers, P. A., Chao, Y. S. and Wright, S. D. (2001) Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering. Arterioscler. Thromb. Vasc. Biol. 21, 115-121. https://doi.org/10.1161/01.ATV.21.1.115
  74. Stein, E. A., Honarpour, N., Wasserman, S. M., Xu, F., Scott, R. and Raal, F. J. (2013) Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation 128, 2113-2120. https://doi.org/10.1161/CIRCULATIONAHA.113.004678
  75. Stone, N. J. (1994) Secondary causes of hyperlipidemia. Med. Clin. North Am. 78, 117-141. https://doi.org/10.1016/s0025-7125(16)30179-1
  76. Stroes, E. S., Thompson, P. D., Corsini, A., Vladutiu, G. D., Raal, F. J., Ray, K. K., Roden, M., Stein, E., Tokgozoglu, L., Nordestgaard, B. G., Bruckert, E., De Backer, G., Krauss, R. M., Laufs, U., Santos, R. D., Hegele, R. A., Hovingh, G. K., Leiter, L. A., Mach, F., Marz, W., Newman, C. B., Wiklund, O., Jacobson, T. A., Catapano, A. L., Chapman, M. J. and Ginsberg, H. N.; European Atherosclerosis Society Consensus Panel (2015) Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur. Heart J. 36, 1012-1022. https://doi.org/10.1093/eurheartj/ehv043
  77. Taskinen, M. R., Lahdenpera, S. and Syvanne, M. (1996) New insights into lipid metabolism in non-insulin-dependent diabetes mellitus. Ann. Med. 28, 335-340. https://doi.org/10.3109/07853899608999090
  78. Tian, L. and Yu, X. (2015) Lipid metabolism disorders and bone dysfunction-interrelated and mutually regulated (review). Mol. Med. Rep. 12, 783-794. https://doi.org/10.3892/mmr.2015.3472
  79. Tocher, D. R. (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 11, 107-184. https://doi.org/10.1080/713610925
  80. Tracey, T. J., Steyn, F. J., Wolvetang, E. J. and Ngo, S. T. (2018) Neuronal lipid metabolism: multiple pathways driving functional outcomes in health and disease. Front. Mol. Neurosci. 11, 10. https://doi.org/10.3389/fnmol.2018.00010
  81. Trebaticka, J., Dukat, A., Durackova, Z. and Muchova, J. (2017) Cardiovascular diseases, depression disorders and potential effects of omega-3 fatty acids. Physiol. Res. 66, 363-382.
  82. Uttaro, A. (2006) Biosynthesis of polyunsaturated fatty acids in lower eukaryotes. IUBMB Life 58, 563-571. https://doi.org/10.1080/15216540600920899
  83. Verma, N. (2017) Introduction to hyperlipidemia and its treatment: a review. Int. J. Curr. Pharm. Res. 9, 6-14. https://doi.org/10.22159/ijcpr.2017v9i1.16616
  84. Waller, J. R. and Waller, D. G. (2014) Drugs for lipid disorders, antiplatelet drugs and fibrinolytics. Medicine 42, 544-548. https://doi.org/10.1016/j.mpmed.2014.06.015
  85. Wu, L. and Parhofer, K. G. (2014) Diabetic dyslipidemia. Metabolism 63, 1469-1479. https://doi.org/10.1016/j.metabol.2014.08.010
  86. Wu, L., Piotrowski, K., Rau, T., Waldmann, E., Broedl, U. C., Demmelmair, H., Koletzko, B., Stark, R. G., Nagel, J. M., Mantzoros, C. S. and Parhofer, K. G. (2014) Walnut-enriched diet reduces fasting non-HDL-cholesterol and apolipoprotein B in healthy Caucasian subjects: a randomized controlled cross-over clinical trial. Metabolism 63, 382-391. https://doi.org/10.1016/j.metabol.2013.11.005
  87. Xiao, C., Rossignol, F., Vaz, F. M. and Ferreira, C. R. (2021) Inherited disorders of complex lipid metabolism: a clinical review. J. Inherit. Metab. Dis. 44, 809-825. https://doi.org/10.1002/jimd.12369
  88. Yan, J. and Horng, T. (2020) Lipid metabolism in regulation of macrophage functions. Trends Cell Biol. 30, 979-989. https://doi.org/10.1016/j.tcb.2020.09.006
  89. Yuan, G., Al-Shali, K. Z. and Hegele, R. A. (2007) Hypertriglyceridemia: its etiology, effects and treatment. Can. Med. Assoc. J. 176, 1113-1120. https://doi.org/10.1503/cmaj.060963
  90. Yue, S., Li, J., Lee, S. Y., Lee, H. J., Shao, T., Song, B., Cheng, L., Masterson, T. A., Liu, X., Ratliff, T. L. and Cheng, J. X. (2014) Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19, 393-406. https://doi.org/10.1016/j.cmet.2014.01.019