Acknowledgement
This research was a part of the project titled 'Omics based on fishery disease control technology development and industrialization (20150242)' funded by the Ministry of Oceans and Fisheries, Korea.
References
- Afrin, S., Gasparrini, M., Forbes-Hernandez, T. Y., Cianciosi, D., Reboredo-Rodriguez, P., Manna, P. P., Battino, M. and Giampieri, F. (2018) Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 1: Enhancement of cellular viability, regulation of cellular apoptosis and improvement of mitochondrial functionality. Food Chem. Toxicol. 121, 203-213. https://doi.org/10.1016/j.fct.2018.09.001
- Aksentijevich, M., Lateef, S. S., Anzenberg, P., Dey, A. K. and Mehta, N. N. (2020) Chronic inflammation, cardiometabolic diseases and effects of treatment: psoriasis as a human model. Trends Cardiovasc. Med. 30, 472-478. https://doi.org/10.1016/j.tcm.2019.11.001
- Aleem, D. and Tohid, H. (2018) Pro-inflammatory cytokines, biomarkers, genetics and the immune system: a mechanistic approach of depression and psoriasis. Rev. Colomb. Psiquiatr. 47, 177-186. https://doi.org/10.1016/j.rcp.2017.03.002
- Bailone, R. L., Fukushima, H. C. S., Ventura Fernandes, B. H., De Aguiar, L. K., Correa, T., Janke, H., Grejo Setti, P., Roca, R. O. and Borra, R. C. (2020) Zebrafish as an alternative animal model in human and animal vaccination research. Lab. Anim. Res. 36, 13. https://doi.org/10.1186/s42826-020-00042-4
- Bjorn, M. E. and Hasselbalch, H. C. (2015) The role of reactive oxygen species in myelofibrosis and related neoplasms. Mediators Inflamm. 2015, 648090. https://doi.org/10.1155/2015/648090
- Chae, B. S. (2020) Effect of low-dose corticosterone pretreatment on the production of inflammatory mediators in super-low-dose LPSprimed immune cells. Toxicol. Res. 37, 47-57. https://doi.org/10.1007/s43188-020-00051-4
- Choi, Y. H. (2021) Trans-cinnamaldehyde protects C2C12 myoblasts from DNA damage, mitochondrial dysfunction and apoptosis caused by oxidative stress through inhibiting ROS production. Genes Genomics 43, 303-312. https://doi.org/10.1007/s13258-020-00987-9
- Choo, Y. Y., Lee, S., Nguyen, P. H., Lee, W., Woo, M. H., Min, B. S. and Lee, J. H. (2015) Caffeoylglycolic acid methyl ester, a major constituent of sorghum, exhibits anti-inflammatory activity via the Nrf2/heme oxygenase-1 pathway. RSC Adv. 5, 17786-17796. https://doi.org/10.1039/C4RA13847C
- Doyle, S. L. and O'Neill, L. A. (2006) Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol. 72, 1102-1113. https://doi.org/10.1016/j.bcp.2006.07.010
- Ferrer, M. D., Busquets-Cortes, C., Capo, X., Tejada, S., Tur, J. A., Pons, A. and Sureda, A. (2019) Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Curr. Med. Chem. 26, 3225-3241. https://doi.org/10.2174/0929867325666180514112124
- Forn-Cuni, G., Meijer, A. H. and Varela, M. (2019) Zebrafish in inflammasome research. Cells 8, 901. https://doi.org/10.3390/cells8080901
- Fujino, M., Nishio, Y., Ito, H., Tanaka, T. and Li, X. K. (2016) 5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction. Int. Immunopharmacol. 37, 71-78. https://doi.org/10.1016/j.intimp.2015.11.034
- He, L., He, T., Farrar, S., Ji, L., Liu, T. and Ma, X. (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem. 44, 532-553. https://doi.org/10.1159/000485089
- Hernandez, A., Patil, N. K., Stothers, C. L., Luan, L., McBride, M. A., Owen, A. M., Burelbach, K. R., Williams, D. L., Sherwood, E. R. and Bohannon, J. K. (2019) Immunobiology and application of toll-like receptor 4 agonists to augment host resistance to infection. Pharmacol. Res. 150, 104502. https://doi.org/10.1016/j.phrs.2019.104502
- Hong, J. Y., Kim, H., Jeon, W. J., Baek, S. and Ha, I. H. (2020) Antioxidative effects of Thymus quinquecostatus CELAK through mitochondrial biogenesis improvement in RAW 264.7 macrophages. Antioxidants (Basel) 9, 548. https://doi.org/10.3390/antiox9060548
- Hu, F., Lou, N., Jiao, J., Guo, F., Xiang, H. and Shang, D. (2020) Macrophages in pancreatitis: mechanisms and therapeutic potential. Biomed. Pharmacother. 131, 110693. https://doi.org/10.1016/j.biopha.2020.110693
- Hwangbo, H., Kim, S. Y., Lee, H., Park, S. H., Hong, S. H., Park, C., Kim, G. Y., Leem, S. H., Hyun, J. W., Cheong, J. and Choi, Y. H. (2020) Auranofin enhances sulforaphane-mediated apoptosis in hepatocellular carcinoma Hep3B cells through inactivation of the PI3K/Akt signaling pathway. Biomol. Ther. (Seoul) 28, 443-455. https://doi.org/10.4062/biomolther.2020.122
- Ishizuka, M., Abe, F., Sano, Y., Takahashi, K., Inoue, K., Nakajima, M., Kohda, T., Komatsu, N., Ogura, S. and Tanaka, T. (2011) Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int. Immunopharmacol. 11, 358-365. https://doi.org/10.1016/j.intimp.2010.11.029
- Jeong, J. W., Cha, H. J., Han, M. H., Hwang, S. J., Lee, D. S., Yoo, J. S., Choi, I. W., Kim, S., Kim, H. S., Kim, G. Y., Hong, S. H., Park, C., Lee, H. J. and Choi, Y. H. (2018) Spermidine protects against oxidative stress in inflammation models using macrophages and zebrafish. Biomol. Ther. (Seoul) 26, 146-156. https://doi.org/10.4062/biomolther.2016.272
- Karunarathne, W. A. H. M., Lee, K. T., Choi, Y. H., Jin, C. Y. and Kim, G. Y. (2020) Anthocyanins isolated from Hibiscus syriacus L. attenuate lipopolysaccharide-induced inflammation and endotoxic shock by inhibiting the TLR4/MD2-mediated NF-κB signaling pathway. Phytomedicine 76, 153237. https://doi.org/10.1016/j.phymed.2020.153237
- Kim, S. Y., Jin, C. Y., Kim, C. H., Yoo, Y. H., Choi, S. H., Kim, G. Y., Yoon, H. M., Park, H. T. and Choi, Y. H. (2019) Isorhamnetin alleviates lipopolysaccharide-induced inflammatory responses in BV2 microglia by inactivating NF-κB, blocking the TLR4 pathway and reducing ROS generation. Int. J. Mol. Med. 43, 682-692.
- Koopman, W. J., Nijtmans, L. G., Dieteren, C. E., Roestenberg, P., Valsecchi, F., Smeitink, J. A. and Willems, P. H. (2010) Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid. Redox Signal. 12, 1431-1470. https://doi.org/10.1089/ars.2009.2743
- Kowalska, M., Piekut, T., Prendecki, M., Sodel, A., Kozubski, W. and Dorszewska, J. (2020) Mitochondrial and nuclear DNA oxidative damage in physiological and pathological aging. DNA Cell Biol. 39, 1410-1420. https://doi.org/10.1089/dna.2019.5347
- Kwon, J., Han, E., Bui, C. B., Shin, W., Lee, J., Lee, S., Choi, Y. B., Lee, A. H., Lee, K. H., Park, C., Obin, M. S., Park, S. K., Seo, Y. J., Oh, G. T., Lee, H. W. and Shin, J. (2012) Assurance of mitochondrial integrity and mammalian longevity by the p62-Keap1-Nrf2-Nqo1 cascade. EMBO Rep. 13, 150-156. https://doi.org/10.1038/embor.2011.246
- Lee, I. T. and Yang, C. M. (2012) Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem. Pharmacol. 84, 581-590. https://doi.org/10.1016/j.bcp.2012.05.005
- Liu, C., Zhu, P., Fujino, M., Isaka, Y., Ito, H., Takahashi, K., Nakajima, M., Tanaka, T., Zhuang, J. and Li, X. K. (2019) 5-aminolaevulinic acid (ALA), enhances heme oxygenase (HO)-1 expression and attenuates tubulointerstitial fibrosis and renal apoptosis in chronic cyclosporine nephropathy. Biochem. Biophys. Res. Comm. 508, 583-589. https://doi.org/10.1016/j.bbrc.2018.11.175
- Liu, Z., Ren, Z., Zhang, J., Chuang, C. C., Kandaswamy, E., Zhou, T. and Zuo, L. (2018) Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 9, 477. https://doi.org/10.3389/fphys.2018.00477
- Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A. and Dulak, J. (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci. 73, 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
- Mills, E. L. and O'Neill, L. A. (2016) Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46, 13-21. https://doi.org/10.1002/eji.201445427
- Murphy, M. P. (2009) How mitochondria produce reactive oxygen species. Biochem. J. 417, 1-13. https://doi.org/10.1042/BJ20081386
- Nakano, Y., Kitagawa, T., Osada, Y., Tanaka, T., Nishizawa, S. and Yamamoto, J. (2019) 5-Aminolevulinic acid suppresses prostaglandin E2 production by murine macrophages and enhances macrophage cytotoxicity against glioma. World Neurosurg. 127, e669-e676.
- Ollinger, R., Wang, H., Yamashita, K., Wegiel, B., Thomas, M., Margreiter, R. and Bach, F. H. (2007) Therapeutic applications of bilirubin and biliverdin in transplantation. Antioxid. Redox Signal. 9, 2175-2185. https://doi.org/10.1089/ars.2007.1807
- Park, S., Kim, M., Hong, Y., Lee, H., Tran, Q., Kim, C., Kwon, S. H., Park, J., Park, J. and Kim, S. H. (2020) Myristoylated TMEM39AS41, a cell-permeable peptide, causes lung cancer cell death. Toxicol. Res. 36, 123-130. https://doi.org/10.1007/s43188-020-00038-1
- Popa, C., Netea, M. G., van Riel, P. L., van der Meer, J. W. and Stalenhoef, A. F. (2007) The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid Res. 48, 751-762. https://doi.org/10.1194/jlr.R600021-JLR200
- Rodriguez-Ruiz, L., Lozano-Gil, J. M., Lachaud, C., Mesa-Del-Castillo, P., Cayuela, M. L., Garcia-Moreno, D., Perez-Oliva, A. B. and Mulero, V. (2020) Zebrafish models to study inflammasome-mediated regulation of hematopoiesis. Trends Immunol. 41, 1116-1127. https://doi.org/10.1016/j.it.2020.10.006
- Saha, S., Buttari, B., Panieri, E., Profumo, E. and Saso, L. (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25, 5474. https://doi.org/10.3390/molecules25225474
- Saini, R. and Singh, S. (2019) Inducible nitric oxide synthase: an asset to neutrophils. J. Leukoc. Biol. 105, 49-61. https://doi.org/10.1002/JLB.4RU0418-161R
- Shi, J., Yu, J., Zhang, Y., Wu, L., Dong, S., Wu, L., Wu, L., Du, S., Zhang, Y. and Ma, D. (2019) PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury. Lab. Invest. 99, 1795-1809. https://doi.org/10.1038/s41374-019-0286-x
- Singh, A., Kukreti, R., Saso, L. and Kukreti, S. (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24, 1583. https://doi.org/10.3390/molecules24081583
- Skuratovskaia, D., Komar, A., Vulf, M. and Litvinova, L. (2020) Mitochondrial destiny in type 2 diabetes: the effects of oxidative stress on the dynamics and biogenesis of mitochondria. PeerJ 8, e9741. https://doi.org/10.7717/peerj.9741
- Soufli, I., Toumi, R., Rafa, H. and Touil-Boukoffa, C. (2016) Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J. Gastrointest. Pharmacol. Ther. 7, 353-360. https://doi.org/10.4292/wjgpt.v7.i3.353
- Sugiyama, Y., Hiraiwa, Y., Hagiya, Y., Nakajima, M., Tanaka, T. and Ogura, S. I. (2018) 5-Aminolevulinic acid regulates the immune response in LPS-stimulated RAW 264.7 macrophages. BMC Immunol. 19, 41. https://doi.org/10.1186/s12865-018-0277-5
- Uchida, A., Kidokoro, K., Sogawa, Y., Itano, S., Nagasu, H., Satoh, M., Sasaki, T. and Kashihara, N. (2019) 5-Aminolevulinic acid exerts renoprotective effect via Nrf2 activation in murine rhabdomyolysis-induced acute kidney injury. Nephrology (Carlton) 24, 28-38. https://doi.org/10.1111/nep.13189
- Utzeri, E. and Usai, P. (2017) Role of non-steroidal anti-inflammatory drugs on intestinal permeability and nonalcoholic fatty liver disease. World J. Gastroenterol. 23, 3954-3963. https://doi.org/10.3748/wjg.v23.i22.3954
- Vanella, L., Barbagallo, I., Tibullo, D., Forte, S., Zappala, A. and Li Volti, G. (2016) The non-canonical functions of the heme oxygenases. Oncotarget 7, 69075-69086. https://doi.org/10.18632/oncotarget.11923
- Wang, T., He, C. and Yu, X. (2017) Pro-inflammatory cytokines: new potential therapeutic targets for obesity-related bone disorders. Curr. Drug Targets 18, 1664-1675.
- Yao, C. and Narumiya, S. (2019) Prostaglandin-cytokine crosstalk in chronic inflammation. Br. J. Pharmacol. 176, 337-354. https://doi.org/10.1111/bph.14530
- Yu, W., Wang, X., Zhao, J., Liu, R., Liu, J., Wang, Z., Peng, J., Wu, H., Zhang, X., Long, Z., Kong, D., Li, W. and Hai, C. (2020) Stat2-Drp1 mediated mitochondrial mass increase is necessary for pro-inflammatory differentiation of macrophages. Redox Biol. 37, 101761. https://doi.org/10.1016/j.redox.2020.101761
- Zhang, H., Cai, D. and Bai, X. (2020) Macrophages regulate the progression of osteoarthritis. Osteoarthritis Cartilage 28, 555-561. https://doi.org/10.1016/j.joca.2020.01.007
- Zhao, M., Zhu, P., Fujino, M., Nishio, Y., Chen, J., Ito, H., Takahashi, K., Nakajima, M., Tanaka, T., Zhao, L., Zhuang, J. and Li, X. K. (2016) 5-Aminolevulinic acid with sodium ferrous citrate induces autophagy and protects cardiomyocytes from hypoxia-induced cellular injury through MAPK-Nrf-2-HO-1 signaling cascade. Bio-chem. Biophys. Res. Commun. 479, 663-669. https://doi.org/10.1016/j.bbrc.2016.09.156
Cited by
- Anti-Inflammatory Effect of Auranofin on Palmitic Acid and LPS-Induced Inflammatory Response by Modulating TLR4 and NOX4-Mediated NF-κB Signaling Pathway in RAW264.7 Macrophages vol.22, pp.11, 2021, https://doi.org/10.3390/ijms22115920
- Protection against Oxidative Stress-Induced Apoptosis by Fermented Sea Tangle (Laminaria japonica Aresch) in Osteoblastic MC3T3-E1 Cells through Activation of Nrf2 Signaling Pathway vol.10, pp.11, 2021, https://doi.org/10.3390/foods10112807