DOI QR코드

DOI QR Code

Suppression of Lipopolysaccharide-Induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae

  • Ji, Seon Yeong (Anti-Aging Research Center, Dong-eui University) ;
  • Cha, Hee-Jae (Department of Parasitology and Genetics, College of Medicine, Kosin University) ;
  • Molagoda, Ilandarage Menu Neelaka (Department of Marine Life Sciences, Jeju National University) ;
  • Kim, Min Yeong (Anti-Aging Research Center, Dong-eui University) ;
  • Kim, So Young (Anti-Aging Research Center, Dong-eui University) ;
  • Hwangbo, Hyun (Anti-Aging Research Center, Dong-eui University) ;
  • Lee, Hyesook (Anti-Aging Research Center, Dong-eui University) ;
  • Kim, Gi-Young (Department of Marine Life Sciences, Jeju National University) ;
  • Kim, Do-Hyung (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Hyun, Jin Won (Department of Biochemistry, College of Medicine, Jeju National University) ;
  • Kim, Heui-Soo (Department of Biological Sciences, Pusan National University) ;
  • Kim, Suhkmann (Department of Chemistry, Pusan National University) ;
  • Jin, Cheng-Yun (School of Pharmaceutical Sciences, Zhengzhou University) ;
  • Choi, Yung Hyun (Anti-Aging Research Center, Dong-eui University)
  • Received : 2021.02.05
  • Accepted : 2021.03.15
  • Published : 2021.11.01

Abstract

In this study, we investigated the inhibitory effect of 5-aminolevulinic acid (ALA), a heme precursor, on inflammatory and oxidative stress activated by lipopolysaccharide (LPS) in RAW 264.7 macrophages by estimating nitric oxide (NO), prostaglandin E2 (PGE2), cytokines, and reactive oxygen species (ROS). We also evaluated the molecular mechanisms through analysis of the expression of their regulatory genes, and further evaluated the anti-inflammatory and antioxidant efficacy of ALA against LPS in the zebrafish model. Our results indicated that ALA treatment significantly attenuated the LPS-induced release of pro-inflammatory mediators including NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. ALA also inhibited the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, reducing their extracellular secretion. Additionally, ALA abolished ROS generation, improved the mitochondrial mass, and enhanced the expression of heme oxygenase-1 (HO-1) and the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 macrophages. However, zinc protoporphyrin, a specific inhibitor of HO-1, reversed the ALA-mediated inhibition of pro-inflammatory cytokines production and activation of mitochondrial function in LPS-treated RAW 264.7 macrophages. Furthermore, ALA significantly abolished the expression of LPS-induced pro-inflammatory mediators and cytokines, and showed strong protective effects against NO and ROS production in zebrafish larvae. In conclusion, our findings suggest that ALA exerts LPS-induced anti-inflammatory and antioxidant effects by upregulating the Nrf2/HO-1 signaling pathway, and that ALA can be a potential functional agent to prevent inflammatory and oxidative damage.

Keywords

Acknowledgement

This research was a part of the project titled 'Omics based on fishery disease control technology development and industrialization (20150242)' funded by the Ministry of Oceans and Fisheries, Korea.

References

  1. Afrin, S., Gasparrini, M., Forbes-Hernandez, T. Y., Cianciosi, D., Reboredo-Rodriguez, P., Manna, P. P., Battino, M. and Giampieri, F. (2018) Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 1: Enhancement of cellular viability, regulation of cellular apoptosis and improvement of mitochondrial functionality. Food Chem. Toxicol. 121, 203-213. https://doi.org/10.1016/j.fct.2018.09.001
  2. Aksentijevich, M., Lateef, S. S., Anzenberg, P., Dey, A. K. and Mehta, N. N. (2020) Chronic inflammation, cardiometabolic diseases and effects of treatment: psoriasis as a human model. Trends Cardiovasc. Med. 30, 472-478. https://doi.org/10.1016/j.tcm.2019.11.001
  3. Aleem, D. and Tohid, H. (2018) Pro-inflammatory cytokines, biomarkers, genetics and the immune system: a mechanistic approach of depression and psoriasis. Rev. Colomb. Psiquiatr. 47, 177-186. https://doi.org/10.1016/j.rcp.2017.03.002
  4. Bailone, R. L., Fukushima, H. C. S., Ventura Fernandes, B. H., De Aguiar, L. K., Correa, T., Janke, H., Grejo Setti, P., Roca, R. O. and Borra, R. C. (2020) Zebrafish as an alternative animal model in human and animal vaccination research. Lab. Anim. Res. 36, 13. https://doi.org/10.1186/s42826-020-00042-4
  5. Bjorn, M. E. and Hasselbalch, H. C. (2015) The role of reactive oxygen species in myelofibrosis and related neoplasms. Mediators Inflamm. 2015, 648090. https://doi.org/10.1155/2015/648090
  6. Chae, B. S. (2020) Effect of low-dose corticosterone pretreatment on the production of inflammatory mediators in super-low-dose LPSprimed immune cells. Toxicol. Res. 37, 47-57. https://doi.org/10.1007/s43188-020-00051-4
  7. Choi, Y. H. (2021) Trans-cinnamaldehyde protects C2C12 myoblasts from DNA damage, mitochondrial dysfunction and apoptosis caused by oxidative stress through inhibiting ROS production. Genes Genomics 43, 303-312. https://doi.org/10.1007/s13258-020-00987-9
  8. Choo, Y. Y., Lee, S., Nguyen, P. H., Lee, W., Woo, M. H., Min, B. S. and Lee, J. H. (2015) Caffeoylglycolic acid methyl ester, a major constituent of sorghum, exhibits anti-inflammatory activity via the Nrf2/heme oxygenase-1 pathway. RSC Adv. 5, 17786-17796. https://doi.org/10.1039/C4RA13847C
  9. Doyle, S. L. and O'Neill, L. A. (2006) Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol. 72, 1102-1113. https://doi.org/10.1016/j.bcp.2006.07.010
  10. Ferrer, M. D., Busquets-Cortes, C., Capo, X., Tejada, S., Tur, J. A., Pons, A. and Sureda, A. (2019) Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Curr. Med. Chem. 26, 3225-3241. https://doi.org/10.2174/0929867325666180514112124
  11. Forn-Cuni, G., Meijer, A. H. and Varela, M. (2019) Zebrafish in inflammasome research. Cells 8, 901. https://doi.org/10.3390/cells8080901
  12. Fujino, M., Nishio, Y., Ito, H., Tanaka, T. and Li, X. K. (2016) 5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction. Int. Immunopharmacol. 37, 71-78. https://doi.org/10.1016/j.intimp.2015.11.034
  13. He, L., He, T., Farrar, S., Ji, L., Liu, T. and Ma, X. (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem. 44, 532-553. https://doi.org/10.1159/000485089
  14. Hernandez, A., Patil, N. K., Stothers, C. L., Luan, L., McBride, M. A., Owen, A. M., Burelbach, K. R., Williams, D. L., Sherwood, E. R. and Bohannon, J. K. (2019) Immunobiology and application of toll-like receptor 4 agonists to augment host resistance to infection. Pharmacol. Res. 150, 104502. https://doi.org/10.1016/j.phrs.2019.104502
  15. Hong, J. Y., Kim, H., Jeon, W. J., Baek, S. and Ha, I. H. (2020) Antioxidative effects of Thymus quinquecostatus CELAK through mitochondrial biogenesis improvement in RAW 264.7 macrophages. Antioxidants (Basel) 9, 548. https://doi.org/10.3390/antiox9060548
  16. Hu, F., Lou, N., Jiao, J., Guo, F., Xiang, H. and Shang, D. (2020) Macrophages in pancreatitis: mechanisms and therapeutic potential. Biomed. Pharmacother. 131, 110693. https://doi.org/10.1016/j.biopha.2020.110693
  17. Hwangbo, H., Kim, S. Y., Lee, H., Park, S. H., Hong, S. H., Park, C., Kim, G. Y., Leem, S. H., Hyun, J. W., Cheong, J. and Choi, Y. H. (2020) Auranofin enhances sulforaphane-mediated apoptosis in hepatocellular carcinoma Hep3B cells through inactivation of the PI3K/Akt signaling pathway. Biomol. Ther. (Seoul) 28, 443-455. https://doi.org/10.4062/biomolther.2020.122
  18. Ishizuka, M., Abe, F., Sano, Y., Takahashi, K., Inoue, K., Nakajima, M., Kohda, T., Komatsu, N., Ogura, S. and Tanaka, T. (2011) Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int. Immunopharmacol. 11, 358-365. https://doi.org/10.1016/j.intimp.2010.11.029
  19. Jeong, J. W., Cha, H. J., Han, M. H., Hwang, S. J., Lee, D. S., Yoo, J. S., Choi, I. W., Kim, S., Kim, H. S., Kim, G. Y., Hong, S. H., Park, C., Lee, H. J. and Choi, Y. H. (2018) Spermidine protects against oxidative stress in inflammation models using macrophages and zebrafish. Biomol. Ther. (Seoul) 26, 146-156. https://doi.org/10.4062/biomolther.2016.272
  20. Karunarathne, W. A. H. M., Lee, K. T., Choi, Y. H., Jin, C. Y. and Kim, G. Y. (2020) Anthocyanins isolated from Hibiscus syriacus L. attenuate lipopolysaccharide-induced inflammation and endotoxic shock by inhibiting the TLR4/MD2-mediated NF-κB signaling pathway. Phytomedicine 76, 153237. https://doi.org/10.1016/j.phymed.2020.153237
  21. Kim, S. Y., Jin, C. Y., Kim, C. H., Yoo, Y. H., Choi, S. H., Kim, G. Y., Yoon, H. M., Park, H. T. and Choi, Y. H. (2019) Isorhamnetin alleviates lipopolysaccharide-induced inflammatory responses in BV2 microglia by inactivating NF-κB, blocking the TLR4 pathway and reducing ROS generation. Int. J. Mol. Med. 43, 682-692.
  22. Koopman, W. J., Nijtmans, L. G., Dieteren, C. E., Roestenberg, P., Valsecchi, F., Smeitink, J. A. and Willems, P. H. (2010) Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid. Redox Signal. 12, 1431-1470. https://doi.org/10.1089/ars.2009.2743
  23. Kowalska, M., Piekut, T., Prendecki, M., Sodel, A., Kozubski, W. and Dorszewska, J. (2020) Mitochondrial and nuclear DNA oxidative damage in physiological and pathological aging. DNA Cell Biol. 39, 1410-1420. https://doi.org/10.1089/dna.2019.5347
  24. Kwon, J., Han, E., Bui, C. B., Shin, W., Lee, J., Lee, S., Choi, Y. B., Lee, A. H., Lee, K. H., Park, C., Obin, M. S., Park, S. K., Seo, Y. J., Oh, G. T., Lee, H. W. and Shin, J. (2012) Assurance of mitochondrial integrity and mammalian longevity by the p62-Keap1-Nrf2-Nqo1 cascade. EMBO Rep. 13, 150-156. https://doi.org/10.1038/embor.2011.246
  25. Lee, I. T. and Yang, C. M. (2012) Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem. Pharmacol. 84, 581-590. https://doi.org/10.1016/j.bcp.2012.05.005
  26. Liu, C., Zhu, P., Fujino, M., Isaka, Y., Ito, H., Takahashi, K., Nakajima, M., Tanaka, T., Zhuang, J. and Li, X. K. (2019) 5-aminolaevulinic acid (ALA), enhances heme oxygenase (HO)-1 expression and attenuates tubulointerstitial fibrosis and renal apoptosis in chronic cyclosporine nephropathy. Biochem. Biophys. Res. Comm. 508, 583-589. https://doi.org/10.1016/j.bbrc.2018.11.175
  27. Liu, Z., Ren, Z., Zhang, J., Chuang, C. C., Kandaswamy, E., Zhou, T. and Zuo, L. (2018) Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 9, 477. https://doi.org/10.3389/fphys.2018.00477
  28. Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A. and Dulak, J. (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci. 73, 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
  29. Mills, E. L. and O'Neill, L. A. (2016) Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46, 13-21. https://doi.org/10.1002/eji.201445427
  30. Murphy, M. P. (2009) How mitochondria produce reactive oxygen species. Biochem. J. 417, 1-13. https://doi.org/10.1042/BJ20081386
  31. Nakano, Y., Kitagawa, T., Osada, Y., Tanaka, T., Nishizawa, S. and Yamamoto, J. (2019) 5-Aminolevulinic acid suppresses prostaglandin E2 production by murine macrophages and enhances macrophage cytotoxicity against glioma. World Neurosurg. 127, e669-e676.
  32. Ollinger, R., Wang, H., Yamashita, K., Wegiel, B., Thomas, M., Margreiter, R. and Bach, F. H. (2007) Therapeutic applications of bilirubin and biliverdin in transplantation. Antioxid. Redox Signal. 9, 2175-2185. https://doi.org/10.1089/ars.2007.1807
  33. Park, S., Kim, M., Hong, Y., Lee, H., Tran, Q., Kim, C., Kwon, S. H., Park, J., Park, J. and Kim, S. H. (2020) Myristoylated TMEM39AS41, a cell-permeable peptide, causes lung cancer cell death. Toxicol. Res. 36, 123-130. https://doi.org/10.1007/s43188-020-00038-1
  34. Popa, C., Netea, M. G., van Riel, P. L., van der Meer, J. W. and Stalenhoef, A. F. (2007) The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid Res. 48, 751-762. https://doi.org/10.1194/jlr.R600021-JLR200
  35. Rodriguez-Ruiz, L., Lozano-Gil, J. M., Lachaud, C., Mesa-Del-Castillo, P., Cayuela, M. L., Garcia-Moreno, D., Perez-Oliva, A. B. and Mulero, V. (2020) Zebrafish models to study inflammasome-mediated regulation of hematopoiesis. Trends Immunol. 41, 1116-1127. https://doi.org/10.1016/j.it.2020.10.006
  36. Saha, S., Buttari, B., Panieri, E., Profumo, E. and Saso, L. (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25, 5474. https://doi.org/10.3390/molecules25225474
  37. Saini, R. and Singh, S. (2019) Inducible nitric oxide synthase: an asset to neutrophils. J. Leukoc. Biol. 105, 49-61. https://doi.org/10.1002/JLB.4RU0418-161R
  38. Shi, J., Yu, J., Zhang, Y., Wu, L., Dong, S., Wu, L., Wu, L., Du, S., Zhang, Y. and Ma, D. (2019) PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury. Lab. Invest. 99, 1795-1809. https://doi.org/10.1038/s41374-019-0286-x
  39. Singh, A., Kukreti, R., Saso, L. and Kukreti, S. (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24, 1583. https://doi.org/10.3390/molecules24081583
  40. Skuratovskaia, D., Komar, A., Vulf, M. and Litvinova, L. (2020) Mitochondrial destiny in type 2 diabetes: the effects of oxidative stress on the dynamics and biogenesis of mitochondria. PeerJ 8, e9741. https://doi.org/10.7717/peerj.9741
  41. Soufli, I., Toumi, R., Rafa, H. and Touil-Boukoffa, C. (2016) Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J. Gastrointest. Pharmacol. Ther. 7, 353-360. https://doi.org/10.4292/wjgpt.v7.i3.353
  42. Sugiyama, Y., Hiraiwa, Y., Hagiya, Y., Nakajima, M., Tanaka, T. and Ogura, S. I. (2018) 5-Aminolevulinic acid regulates the immune response in LPS-stimulated RAW 264.7 macrophages. BMC Immunol. 19, 41. https://doi.org/10.1186/s12865-018-0277-5
  43. Uchida, A., Kidokoro, K., Sogawa, Y., Itano, S., Nagasu, H., Satoh, M., Sasaki, T. and Kashihara, N. (2019) 5-Aminolevulinic acid exerts renoprotective effect via Nrf2 activation in murine rhabdomyolysis-induced acute kidney injury. Nephrology (Carlton) 24, 28-38. https://doi.org/10.1111/nep.13189
  44. Utzeri, E. and Usai, P. (2017) Role of non-steroidal anti-inflammatory drugs on intestinal permeability and nonalcoholic fatty liver disease. World J. Gastroenterol. 23, 3954-3963. https://doi.org/10.3748/wjg.v23.i22.3954
  45. Vanella, L., Barbagallo, I., Tibullo, D., Forte, S., Zappala, A. and Li Volti, G. (2016) The non-canonical functions of the heme oxygenases. Oncotarget 7, 69075-69086. https://doi.org/10.18632/oncotarget.11923
  46. Wang, T., He, C. and Yu, X. (2017) Pro-inflammatory cytokines: new potential therapeutic targets for obesity-related bone disorders. Curr. Drug Targets 18, 1664-1675.
  47. Yao, C. and Narumiya, S. (2019) Prostaglandin-cytokine crosstalk in chronic inflammation. Br. J. Pharmacol. 176, 337-354. https://doi.org/10.1111/bph.14530
  48. Yu, W., Wang, X., Zhao, J., Liu, R., Liu, J., Wang, Z., Peng, J., Wu, H., Zhang, X., Long, Z., Kong, D., Li, W. and Hai, C. (2020) Stat2-Drp1 mediated mitochondrial mass increase is necessary for pro-inflammatory differentiation of macrophages. Redox Biol. 37, 101761. https://doi.org/10.1016/j.redox.2020.101761
  49. Zhang, H., Cai, D. and Bai, X. (2020) Macrophages regulate the progression of osteoarthritis. Osteoarthritis Cartilage 28, 555-561. https://doi.org/10.1016/j.joca.2020.01.007
  50. Zhao, M., Zhu, P., Fujino, M., Nishio, Y., Chen, J., Ito, H., Takahashi, K., Nakajima, M., Tanaka, T., Zhao, L., Zhuang, J. and Li, X. K. (2016) 5-Aminolevulinic acid with sodium ferrous citrate induces autophagy and protects cardiomyocytes from hypoxia-induced cellular injury through MAPK-Nrf-2-HO-1 signaling cascade. Bio-chem. Biophys. Res. Commun. 479, 663-669. https://doi.org/10.1016/j.bbrc.2016.09.156

Cited by

  1. Anti-Inflammatory Effect of Auranofin on Palmitic Acid and LPS-Induced Inflammatory Response by Modulating TLR4 and NOX4-Mediated NF-κB Signaling Pathway in RAW264.7 Macrophages vol.22, pp.11, 2021, https://doi.org/10.3390/ijms22115920
  2. Protection against Oxidative Stress-Induced Apoptosis by Fermented Sea Tangle (Laminaria japonica Aresch) in Osteoblastic MC3T3-E1 Cells through Activation of Nrf2 Signaling Pathway vol.10, pp.11, 2021, https://doi.org/10.3390/foods10112807