Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2018R1A5A2024425).
References
- Baumgart, D. C. and Carding, S. R. (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369, 1627-1640. https://doi.org/10.1016/S0140-6736(07)60750-8
- Baumgart, D. C. and Sandborn, W. J. (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369, 1641-1657. https://doi.org/10.1016/S0140-6736(07)60751-X
- Bazarganipour, S., Hausmann, J., Oertel, S., El-Hindi, K., Brachtendorf, S., Blumenstein, I., Kubesch, A., Sprinzl, K., Birod, K., Hahnefeld, L., Trautmann, S., Thomas, D., Herrmann, E., Geisslinger, G., Schiffmann, S. and Grosch, S. (2019) The lipid status in patients with ulcerative colitis: sphingolipids are disease-dependent regulated. J. Clin. Med. 8, 971. https://doi.org/10.3390/jcm8070971
- Bene, J., Komlosi, K., Havasi, V., Talian, G., Gasztonyi, B., Horvath, K., Mozsik, G., Hunyady, B., Melegh, B. and Figler, M. (2006) Changes of plasma fasting carnitine ester profile in patients with ulcerative colitis. World J. Gastroenterol. 12, 110-113. https://doi.org/10.3748/wjg.v12.i1.110
- Bennike, T., Birkelund, S., Stensballe, A. and Andersen, V. (2014) Biomarkers in inflammatory bowel diseases: current status and proteomics identification strategies. World J. Gastroenterol. 20, 3231-3244. https://doi.org/10.3748/wjg.v20.i12.3231
- Braun, A., Treede, I., Gotthardt, D., Tietje, A., Zahn, A., Ruhwald, R., Schoenfeld, U., Welsch, T., Kienle, P., Erben, G., Lehmann, W. D., Fuellekrug, J., Stremmel, W. and Ehehalt, R. (2009) Alterations of phospholipid concentration and species composition of the intestinal mucus barrier in ulcerative colitis: a clue to pathogenesis. Inflamm. Bowel Dis. 15, 1705-1720. https://doi.org/10.1002/ibd.20993
- Bryan, P. F., Karla, C., Edgar Alejandro, M. T., Sara Elva, E. P., Gemma, F. and Luz, C. (2016) Sphingolipids as mediators in the crosstalk between microbiota and intestinal cells: implications for inflammatory bowel disease. Mediators Inflamm. 2016, 9890141. https://doi.org/10.1155/2016/9890141
- Cajka, T. and Fiehn, O. (2014) Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Analyt. Chem. 61, 192-206. https://doi.org/10.1016/j.trac.2014.04.017
- Daniluk, U., Daniluk, J., Kucharski, R., Kowalczyk, T., Pietrowska, K., Samczuk, P., Filimoniuk, A., Kretowski, A., Lebensztejn, D. and Ciborowski, M. (2019) Untargeted metabolomics and inflammatory markers profiling in children with Crohn's disease and ulcerative colitis-a preliminary study. Inflamm. Bowel Dis. 25, 1120-1128. https://doi.org/10.1093/ibd/izy402
- Dennis, E. A. and Norris, P. C. (2015) Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 11, 511-523. https://doi.org/10.1038/nri3859
- Diab, J., Hansen, T., Goll, R., Stenlund, H., Ahnlund, M., Jensen, E., Moritz, T., Florholmen, J. and Forsdahl, G. (2019) Lipidomics in ulcerative colitis reveal alteration in mucosal lipid composition associated with the disease state. Inflamm. Bowel Dis. 25, 1780-1787. https://doi.org/10.1093/ibd/izz098
- Duan, R. D. and Nilsson, A. (2009) Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog. Lipid Res. 48, 62-72. https://doi.org/10.1016/j.plipres.2008.04.003
- Ehehalt, R., Wagenblast, J., Erben, G., Lehmann, W. D., Hinz, U., Merle, U. and Stremmel, W. (2004) Phosphatidylcholine and lysophosphatidylcholine in intestinal mucus of ulcerative colitis patients. A quantitative approach by nanoelectrospray-tandem mass spectrometry. Scand. J. Gastroenterol. 39, 737-742. https://doi.org/10.1080/00365520410006233
- Espaillat, M. P., Snider, A. J., Qiu, Z., Channer, B., Coant, N., Schuchman, E. H., Kew, R. R., Sheridan, B. S., Hannun, Y. A. and Obeid, L. M. (2018) Loss of acid ceramidase in myeloid cells suppresses intestinal neutrophil recruitment. FASEB J. 32, 2339-2353. https://doi.org/10.1096/fj.201700585r
- Ezri, J., Marques-Vidal, P. and Nydegger, A. (2012) Impact of disease and treatments on growth and puberty of pediatric patients with inflammatory bowel disease. Digestion 85, 308-319. https://doi.org/10.1159/000336766
- Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R. H., Shimizu, T., Spener, F., Van Meer, G., Wakelam, M. J. O. and Dennis, E. A. (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50, S9-S14. https://doi.org/10.1194/jlr.R800095-JLR200
- Fan, F., Mundra, P. A., Fang, L., Galvin, A., Moore, X. L., Weir, J. M., Wong, G., White, D. A., Chin-Dusting, J., Sparrow, M. P., Meikle, P. J. and Dart, A. M. (2015) Lipidomic profiling in inflammatory bowel disease: comparison between ulcerative colitis and Crohn's disease. Inflamm. Bowel Dis. 21, 1511-1518. https://doi.org/10.1097/MIB.0000000000000394
- Furlan, A. D., Pennick, V., Bombardier, C. and Van Tulder, M. (2009) 2009 Updated method guidelines for systematic reviews in the cochrane back review group. Spine 34, 1929-1941. https://doi.org/10.1097/BRS.0b013e3181b1c99f
- Gallagher, K., Catesson, A., Griffin, J. L., Holmes, E. and Williams, H. R. T. (2021) Metabolomic analysis in inflammatory bowel disease: a systematic review. J. Crohns Colitis 15, 813-826. https://doi.org/10.1093/ecco-jcc/jjaa227
- Guan, S., Jia, B., Chao, K., Zhu, X., Tang, J., Li, M., Wu, L., Xing, L., Liu, K., Zhang, L., Wang, X., Gao, X. and Huang, M. (2020) UPLCQTOF-MS-based plasma lipidomic profiling reveals biomarkers for inflammatory bowel disease diagnosis. J. Proteome Res. 19, 600-609. https://doi.org/10.1021/acs.jproteome.9b00440
- Han, X. (2016) Lipidomics for studying metabolism. Nat. Rev. Endocrinol. 12, 668-679. https://doi.org/10.1038/nrendo.2016.98
- Horta, D., Moreno-Torres, M., Ramirez-Lazaro, M. J., Lario, S., Kuligowski, J., Sanjuan-Herraez, J. D., Quintas, G., Villoria, A. and Calvet, X. (2021) Analysis of the association between fatigue and the plasma lipidomic profile of inflammatory bowel disease patients. J. Proteome Res. 20, 381-392. https://doi.org/10.1021/acs.jproteome.0c00462
- Huan, T., Palermo, A., Ivanisevic, J., Rinehart, D., Edler, D., Phommavongsay, T., Benton, H. P., Guijas, C., Domingo-Almenara, X., Warth, B. and Siuzdak, G. (2018) Autonomous multimodal metabolomics data integration for comprehensive pathway analysis and systems biology. Anal. Chem. 90, 8396-8403. https://doi.org/10.1021/acs.analchem.8b00875
- Iwatani, S., Iijima, H., Otake, Y., Amano, T., Tani, M., Yoshihara, T., Tashiro, T., Tsujii, Y., Inoue, T., Hayashi, Y., Takeda, K., Hayashi, A., Fujita, S., Shinzaki, S. and Takehara, T. (2020) Novel mass spectrometry-based comprehensive lipidomic analysis of plasma from patients with inflammatory bowel disease. J. Gastroenterol. Hepatol. 35, 1355-1364. https://doi.org/10.1111/jgh.15067
- Jansson, J., Willing, B., Lucio, M., Fekete, A., Dicksved, J., Halfvarson, J., Tysk, C. and Schmitt-Kopplin, P. (2009) Metabolomics reveals metabolic biomarkers of Crohn's disease. PLoS ONE 4, e6386. https://doi.org/10.1371/journal.pone.0006386
- Lai, Y., Xue, J., Liu, C. W., Gao, B., Chi, L., Tu, P., Lu, K. and Ru, H. (2019) Serum metabolomics identifies altered bioenergetics, signaling cascades in parallel with exposome markers in Crohn's disease. Molecules 24, 449. https://doi.org/10.3390/molecules24030449
- Lee, Y., Choo, J., Kim, S. J., Heo, G., Pothoulakis, C., Kim, Y. H. and Im, E. (2017) Analysis of endogenous lipids during intestinal wound healing. PLoS ONE 12, e0183028. https://doi.org/10.1371/journal.pone.0183028
- Liebisch, G., Vizcaino, J. A., Kofeler, H., Trotzmuller, M., Griffiths, W. J., Schmitz, G., Spener, F. and Wakelam, M. J. O. (2013) Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 54, 1523-1530. https://doi.org/10.1194/jlr.M033506
- Manfredi, M., Conte, E., Barberis, E., Buzzi, A., Robotti, E., Caneparo, V., Cecconi, D., Brandi, J., Vanni, E., Finocchiaro, M., Astegiano, M., Gariglio, M., Marengo, E. and De Andrea, M. (2019) Integrated serum proteins and fatty acids analysis for putative biomarker discovery in inflammatory bowel disease. J. Proteomics 195, 138-149. https://doi.org/10.1016/j.jprot.2018.10.017
- Martin, F. P., Ezri, J., Cominetti, O., Da Silva, L., Kussmann, M., Godin, J. P. and Nydegger, A. (2016) Urinary metabolic phenotyping reveals differences in the metabolic status of healthy and inflammatory bowel disease (IBD) children in relation to growth and disease activity. Int. J. Mol. Sci. 17, 1310. https://doi.org/10.3390/ijms17081310
- Masoodi, M., Pearl, D. S., Eiden, M., Shute, J. K., Brown, J. F., Calder, P. C. and Trebble, T. M. (2013) Altered colonic mucosal polyunsaturated fatty acid (PUFA) derived lipid mediators in ulcerative colitis: new insight into relationship with disease activity and pathophysiology. PLoS ONE 8, e76532. https://doi.org/10.1371/journal.pone.0076532
- McShane, L. M., Cavenagh, M. M., Lively, T. G., Eberhard, D. A., Bigbee, W. L., Williams, P. M., Mesirov, J. P., Polley, M. Y. C., Kim, K. Y., Tricoli, J. V., Taylor, J. M. G., Shuman, D. J., Simon, R. M., Doroshow, J. H. and Conley, B. A. (2013) Criteria for the use of omics-based predictors in clinical trials. 502, 317-320. https://doi.org/10.1038/nature12564
- Moher, D., Liberati, A., Tetzlaff, J. and Altman, D. G. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339, b2535. https://doi.org/10.1136/bmj.b2535
- Molodecky, N. A., Panaccione, R., Ghosh, S., Barkema, H. W. and Kaplan, G. G. (2011) Challenges associated with identifying the environmental determinants of the inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 1792-1799. https://doi.org/10.1002/ibd.21511
- Murgia, A., Hinz, C., Liggi, S., Denes, J., Hall, Z., West, J., Santoru, M. L., Piras, C., Manis, C., Usai, P., Atzori, L., Griffin, J. L. and Caboni, P. (2018) Italian cohort of patients affected by inflammatory bowel disease is characterised by variation in glycerophospholipid, free fatty acids and amino acid levels. Metabolomics 14, 140. https://doi.org/10.1007/s11306-018-1439-4
- Ng, S. C., Shi, H. Y., Hamidi, N., Underwood, F. E., Tang, W., Benchimol, E. I., Panaccione, R., Ghosh, S., Wu, J. C. Y., Chan, F. K. L., Sung, J. J. Y. and Kaplan, G. G. (2017) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769-2778. https://doi.org/10.1016/S0140-6736(17)32448-0
- Pearl, D. S., Masoodi, M., Eiden, M., Brummer, J., Gullick, D., Mckeever, T. M., Whittaker, M. A., Nitch-Smith, H., Brown, J. F., Shute, J. K., Mills, G., Calder, P. C. and Trebble, T. M. (2014) Altered colonic mucosal availability of n-3 and n-6 polyunsaturated fatty acids in ulcerative colitis and the relationship to disease activity. J. Crohns Colitis 8, 70-79. https://doi.org/10.1016/j.crohns.2013.03.013
- Roberts, L. D., McCombie, G., Titman, C. M. and Griffin, J. L. (2008) A matter of fat: an introduction to lipidomic profiling methods. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871, 174-181. https://doi.org/10.1016/j.jchromb.2008.04.002
- Sauer, C. G. and Kugathasan, S. (2009) Pediatric inflammatory bowel disease: highlighting pediatric differences in IBD. Gastroenterol. Clin. North Am. 38, 611-628. https://doi.org/10.1016/j.gtc.2009.07.010
- Schneider, H., Braun, A., Fullekrug, J., Stremmel, W. and Ehehalt, R. (2010) Lipid based therapy for ulcerative colitis-modulation of intestinal mucus membrane phospholipids as a tool to influence inflammation. Int. J. Mol. Sci. 11, 4149-4164. https://doi.org/10.3390/ijms11104149
- Scoville, E. A., Allaman, M. M., Brown, C. T., Motley, A. K., Horst, S. N., Williams, C. S., Koyama, T., Zhao, Z., Adams, D. W., Beaulieu, D. B., Schwartz, D. A., Wilson, K. T. and Coburn, L. A. (2018) Alterations in lipid, amino acid, and energy metabolism distinguish Crohn's disease from ulcerative colitis and control subjects by serum metabolomic profiling. Metabolomics 14, 17. https://doi.org/10.1007/s11306-017-1311-y
- Sewell, G. W., Hannun, Y. A., Han, X., Koster, G., Bielawski, J., Goss, V., Smith, P. J., Rahman, F. Z., Vega, R., Bloom, S. L., Walker, A. P., Postle, A. D. and Segal, A. W. (2012) Lipidomic profiling in Crohn's disease: abnormalities in phosphatidylinositols, with preservation of ceramide, phosphatidylcholine and phosphatidylserine composition. Int. J. Biochem. Cell Biol. 44, 1839-1846. https://doi.org/10.1016/j.biocel.2012.06.016
- Storr, M., Vogel, H. J. and Schicho, R. (2013) Metabolomics: is it useful for inflammatory bowel diseases? Curr. Opin. Gastroenterol. 29, 378-383. https://doi.org/10.1097/MOG.0b013e328361f488
- Tefas, C., Ciobanu, L., Tantau, M., Moraru, C. and Socaciu, C. (2020) The potential of metabolic and lipid profiling in inflammatory bowel diseases: a pilot study. Bosn. J. Basic Med. Sci. 20, 262-270.
- Titz, B., Gadaleta, R. M., Lo Sasso, G., Elamin, A., Ekroos, K., Ivanov, N. V., Peitsch, M. C. and Hoeng, J. (2018) Proteomics and lipidomics in inflammatory bowel disease research: from mechanistic insights to biomarker identification. Int. J. Mol. Sci. 19, 2775. https://doi.org/10.3390/ijms19092775
- Van Nuenen, M. H. M. C., Venema, K., Van Der Woude, J. C. J. and Kuipers, E. J. (2004) The metabolic activity of fecal microbiota from healthy individuals and patients with inflammatory bowel disease. Dig. Dis. Sci. 49, 485-491. https://doi.org/10.1023/B:DDAS.0000020508.64440.73
- Wang, R., Gu, X., Dai, W., Ye, J., Lu, F., Chai, Y., Fan, G., Gonzalez, F. J., Duan, G. and Qi, Y. (2016) A lipidomics investigation into the intervention of celastrol in experimental colitis. Mol. Biosyst. 12, 1436-1444. https://doi.org/10.1039/c5mb00864f
- Williams, H. R., Cox, I. J., Walker, D. G., Cobbold, J. F., Taylor-Robinson, S. D., Marshall, S. E. and Orchard, T. R. (2010) Differences in gut microbial metabolism are responsible for reduced hippurate synthesis in Crohn's disease. BMC Gastroenterol. 10, 108. https://doi.org/10.1186/1471-230X-10-108
- Zhang, C., Wang, K., Yang, L., Liu, R., Chu, Y., Qin, X., Yang, P. and Yu, H. (2018) Lipid metabolism in inflammation-related diseases. Analyst 143, 4526-4536. https://doi.org/10.1039/c8an01046c