DOI QR코드

DOI QR Code

Eriodictyol Inhibits the Production and Gene Expression of MUC5AC Mucin via the IκBα-NF-κB p65 Signaling Pathway in Airway Epithelial Cells

  • Yun, Chawon (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Lee, Hyun Jae (Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University) ;
  • Lee, Choong Jae (Department of Pharmacology, School of Medicine, Chungnam National University)
  • Received : 2021.05.13
  • Accepted : 2021.08.28
  • Published : 2021.11.01

Abstract

In this study, we investigated whether eriodictyol exerts an effect on the production and gene expression of MUC5AC mucin in human pulmonary epithelial NCI-H292 cells. The cells were pretreated with eriodictyol for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. The effect of eriodictyol on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway was also investigated. Eriodictyol suppressed the MUC5AC mucin production and gene expression induced by PMA via suppression of inhibitory kappa Bα degradation and NF-κB p65 nuclear translocation. These results suggest that eriodictyol inhibits mucin gene expression and production in human airway epithelial cells via regulation of the NF-κB signaling pathway.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2014R1A6A1029617).

References

  1. Adler, K. B. and Li, Y. (2001) Airway epithelium and mucus: intracellular signaling pathways for gene expression and secretion. Am. J. Respir. Cell Mol. Biol. 25, 397-400. https://doi.org/10.1165/ajrcmb.25.4.f214
  2. Choi, B. S., Kim, Y. J., Choi, J. S., Lee, H. J. and Lee, C. J. (2019) Obtusifolin isolated from the seeds of Cassia obtusifolia regulates the gene expression and production of MUC5AC mucin in airway epithelial cells via affecting NF-κB pathway. Phytother. Res. 33, 919-928. https://doi.org/10.1002/ptr.6284
  3. Deshpande, R. R., Tiwari, A. P., Nyayanit, N. and Modak, M. (2020) In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2. Eur. J. Pharmacol. 886, 173430. https://doi.org/10.1016/j.ejphar.2020.173430
  4. Eniafe, G. O., Metibemu, D. S. and Omotuyi, O. I., Ogunleye, A. J., Inyang, O. K., Adelakun, N. S., Adeniran, Y. O., Adewumi, B., Enejoh, O. A., Osunmuyiwa, J. O., Shodehinde, S. A. and Oyeneyin, O. E. (2018) Agemone mexicana flavanones; apposite inverse agonists of the β2-adrenergic receptor in asthma treatment. Bioinformation 14, 60-67. https://doi.org/10.6026/97320630014060
  5. Fujisawa, T., Velichko, S., Thai, P., Hung, L. Y., Huang, F. and Wu, R. (2009) Regulation of airway MUC5AC expression by IL-1beta and IL-17A; the NF-kappa B paradigm. J. Immunol. 183, 6236-6243. https://doi.org/10.4049/jimmunol.0900614
  6. Garvin, L. M., Chen, Y., Damsker, J. M. and Rose, M. C. (2016) A novel dissociative steroid VBP15 reduces MUC5AC gene expression in airway epithelial cells but lacks the GRE mediated transcriptional properties of dexamethasone. Pulm. Pharmacol. Ther. 38, 17-26. https://doi.org/10.1016/j.pupt.2016.04.004
  7. Huang, W. C., Wu, L. Y., Hu, S. and Wu, S. J. (2018) Spilanthol inhibits COX-2 and ICAM-1 expression via suppression of NF-kappaB and MAPK signaling in interleukin-1beta-stimulated human lung epithelial cells. Inflammation 41, 1934-1944. https://doi.org/10.1007/s10753-018-0837-0
  8. Ishinaga, H., Takeuchi, K., Kishioka, C., Suzuki, S., Basbaum, C. and Majima, Y. (2005) Pranlukast inhibits NF-kappaB activation and MUC2 gene expression in cultured human epithelial cells. Pharmacology 73, 89-96. https://doi.org/10.1159/000081294
  9. Islam, A., Islam, M. S., Rahman, M. K., Uddin, M. N. and Akanda, M. R. (2020) The pharmacological and biological roles of eriodictyol. Arch. Pharm. Res. 43, 582-592. https://doi.org/10.1007/s12272-020-01243-0
  10. Kim, J. O., Sikder, M. A., Lee, H. J., Rahman, M., Kim, J. H., Chang, G. T. and Lee, C. J. (2012) Phorbol ester or epidermal growth factorinduced MUC5AC mucin gene expression and production from airway epithelial cells are inhibited by eriodictyol and wogonin. Phytother. Res. 26, 1784-1788. https://doi.org/10.1002/ptr.4650
  11. Kurakula, K., Hamers, A. A., van Loenen, P. and de Vries, C. J. (2015) 6-Mercaptopurine reduces cytokine and Muc5ac expression involving inhibition of NF-kB activation in airway epithelial cells. Respir. Res. 16, 73. https://doi.org/10.1186/s12931-015-0236-0
  12. Laos, S., Baeckstrom, D. and Hansson, G. C. (2006) Inhibition of NFkappaB activation and chemokine expression by the leukocyte glycoprotein, CD43, in colon cancer cells. Int. J. Oncol. 28, 695-704.
  13. Lee, J. W., Ryu, H. W., Lee, S. U., Kim, M. G., Kwon, O. K. and Kim, M. O., Oh, T. K., Lee, J. K., Kim, T. Y., Lee, S. W., Choi, S., Li, W. Y., Ahn, K. S. and Oh, S. R. (2019) Pistacia weinmannifolia ameliorates cigarette smoke and lipopolysaccharide-induced pulmonary inflammation by inhibiting interleukin-8 production and NF-kappaB activation. Int. J. Mol. Med. 44, 949-959.
  14. Li, J. D., Dohrman, A. F., Gallup, M., Miyata, S., Gum, J. R., Kim, Y. S., Nadel, J. A., Prince, A. and Basbaum, C. B. (1997) Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc. Natl. Acad. Sci. U.S.A. 94, 967-972. https://doi.org/10.1073/pnas.94.3.967
  15. Li, X., Jin, F., Lee, H. J. and Lee, C. J. (2020) Recent advances in the development of novel drug candidates for regulating the secretion of pulmonary mucus. Biomol. Ther. (Seoul) 28, 293-301. https://doi.org/10.4062/biomolther.2020.002
  16. Lillehoj, E. R. and Kim, K. C. (2002) Airway mucus: its components and function. Arch. Pharm. Res. 25, 770-780. https://doi.org/10.1007/BF02976990
  17. Liu, Y., Zhang, B., Zhang, T., Wang, H., Peng, L. and Zhou, L. (2020) Effect of NF-kappaB signal pathway on mucus secretion induced by atmospheric PM 2.5 in asthmatic rats. Ecotoxicol. Environ. Saf. 190, 10094.
  18. Nie, Y. C., Wu, H., Li, P. B., Xie, L. M., Luo, Y. L., Shen, J. G. and Su, W. W. (2012) Naringin attenuates EGF-induced MUC5AC secretion in A549 cells by suppressing the cooperative activities of MAPKsAP-1 and IKKs-IkappaB-NF-kappaB signaling pathways. Eur. J. Pharmacol. 690, 207-213. https://doi.org/10.1016/j.ejphar.2012.06.040
  19. Rose, M. C. and Voynow, J. A. (2006) Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol. Rev. 86, 245-278. https://doi.org/10.1152/physrev.00010.2005
  20. Seo, H. S., Sikder, M. A., Lee, H. J., Ryu, J. and Lee, C. J. (2014) Apigenin inhibits tumor necrosis factor-α-induced production and gene expression of mucin through regulating nuclear factor-kappa B signaling pathway in airway epithelial cells. Biomol. Ther. (Seoul) 22, 525-531. https://doi.org/10.4062/biomolther.2014.094
  21. Shang, J., Liu, W., Yin, C., Chu, H. and Zhang, M. (2019) Cucurbitacin E ameliorates lipopolysaccharide-evoked injury, inflammation and MUC5AC expression in bronchial epithelial cells by restraining the HMGB1-TLR4-NF-kappaB signaling. Mol. Immunol. 114, 571-577. https://doi.org/10.1016/j.molimm.2019.09.008
  22. Shao, M. X., Ueki, I. F. and Nadel, J. A. (2003) TNF-alpha converting enzyme mediated MUC5AC mucin expression in cultured human airway epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 100, 11618-11623. https://doi.org/10.1073/pnas.1534804100
  23. Takeyama, K., Dabbagh, K., Lee, H., Agusti, C., Lausier, J. A., Ueki, I. F., Grattan, K. M. and Nadel, J. A. (1999) Epidermal growth factor system regulates mucin production in airways. Proc. Natl. Acad. Sci. U.S.A. 96, 3081-3086. https://doi.org/10.1073/pnas.96.6.3081
  24. Wang, X., Deng, R., Dong, J., Huang, L., Li, J. and Zhang, B. (2020) Eriodictyol ameliorates lipopolysaccharide-induced acute lung injury by suppressing the inflammatory COX-2/NLRP3/NF-kappaB pathway in mice. J. Biochem. Mol. Toxicol. 34, e22434. https://doi.org/10.1002/jbt.22434
  25. Wang, Y., Chen, Y., Chen, Y., Zhou, B., Shan, X. and Yang, G. (2018) Eriodictyol inhibits IL-1 beta-induced inflammatory response in human osteoarthritis chondrocytes. Biomed. Pharmacother. 107, 1128-1134. https://doi.org/10.1016/j.biopha.2018.08.103
  26. Wu, D. Y., Wu, R., Reddy, S. P., Lee, Y. C. and Chang, M. M. (2007) Distinctive epidermal growth factor receptor/extracellular regulated kinase-independent and -dependent signaling pathways in the induction of airway mucin 5B and mucin 5AC expression by phorbol 12-myristate 13-acetate. Am. J. Pathol. 170, 20-32. https://doi.org/10.2353/ajpath.2007.060452
  27. Xuewen, H., Ping, O., Zhongwei, Y., Zhongqiong, Y., Hualin, F., Juchun, L., Changliang, H., Gang, S., Zhixiang, Y., Xu, S., Yuanfeng, Z., Lixia, L. and Lizi, Y. (2018) Eriodictyol protects against Staphylococcus aureus-induced lung cell injury by inhibiting alpha-hemolysin expression. World J. Microbiol. Biotechnol. 34, 64. https://doi.org/10.1007/s11274-018-2446-3
  28. Zhang, Y., Zhang, R. and Ni, H. (2019) Eriodictyol exerts potent anticancer activity against A549 human lung cancer cell line by inducing mitochondrial-mediated apoptosis, G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signalling pathway. Arch. Med. Sci. 16, 446-452. https://doi.org/10.5114/aoms.2019.85152