DOI QR코드

DOI QR Code

Potential role of artificial intelligence in craniofacial surgery

  • Ryu, Jeong Yeop (Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University) ;
  • Chung, Ho Yun (Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University) ;
  • Choi, Kang Young (Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University)
  • Received : 2021.10.07
  • Accepted : 2021.10.20
  • Published : 2021.10.20

Abstract

The field of artificial intelligence (AI) is rapidly advancing, and AI models are increasingly applied in the medical field, especially in medical imaging, pathology, natural language processing, and biosignal analysis. On the basis of these advances, telemedicine, which allows people to receive medical services outside of hospitals or clinics, is also developing in many countries. The mechanisms of deep learning used in medical AI include convolutional neural networks, residual neural networks, and generative adversarial networks. Herein, we investigate the possibility of using these AI methods in the field of craniofacial surgery, with potential applications including craniofacial trauma, congenital anomalies, and cosmetic surgery.

Keywords

References

  1. Benjamens S, Dhunnoo P, Mesko B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med 2020;3:118. https://doi.org/10.1038/s41746-020-00324-0
  2. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. 1943. Bull Math Biol 1990;52:99-115. https://doi.org/10.1007/BF02459570
  3. Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 1958;65:386-408. https://doi.org/10.1037/h0042519
  4. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006;313:504-7. https://doi.org/10.1126/science.1127647
  5. Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK. Medical image analysis using convolutional neural networks: a review. J Med Syst 2018;42:226. https://doi.org/10.1007/s10916-018-1088-1
  6. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998;86:2278-324. https://doi.org/10.1109/5.726791
  7. Yamashita R, Nishio M, Do R, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging 2018;9:611-29. https://doi.org/10.1007/s13244-018-0639-9
  8. Lee CL, Yang HJ, Hwang YJ. Comparison of the outcomes of nasal bone reduction using serial imaging. Arch Craniofac Surg 2021;22:193-8. https://doi.org/10.7181/acfs.2021.00311
  9. Lee YJ. Orbital floor fracture repair with implants: a retrospective study. Arch Craniofac Surg 2021;22:177-82. https://doi.org/10.7181/acfs.2020.00640
  10. Al-Helo S, Alomari RS, Ghosh S, Chaudhary V, Dhillon G, AlZoubi MB, et al. Compression fracture diagnosis in lumbar: a clinical CAD system. Int J Comput Assist Radiol Surg 2013;8:461-9. https://doi.org/10.1007/s11548-012-0796-0
  11. Basha CMAKZ, Padmaja M, Balaji GN. Computer aided fracture detection system. J Med Imaging Health Inform 2018;8:526-31. https://doi.org/10.1166/jmihi.2018.2324
  12. Chung SW, Han SS, Lee JW, Oh KS, Kim NR, Yoon JP, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop 2018;89:468-73. https://doi.org/10.1080/17453674.2018.1453714
  13. Gale W, Oakden-Rayner L, Carneiro G, Bradley AP, Palmer LJ. Detecting hip fractures with radiologist-level performance using deep neural networks. arXiv 1711.06504 [Preprint]. 2017 [cited 2021 Sep 28]. https://arxiv.org/abs/1711.06504.
  14. Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol 2018;73:439-45. https://doi.org/10.1016/j.crad.2017.11.015
  15. Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A 2018;115:11591-6. https://doi.org/10.1073/pnas.1806905115
  16. Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop 2017;88:581-6. https://doi.org/10.1080/17453674.2017.1344459
  17. Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol 2019;48:239-44. https://doi.org/10.1007/s00256-018-3016-3
  18. Yao J, Burns JE, Munoz H, Summers RM. Cortical shell unwrapping for vertebral body abnormality detection on computed tomography. Comput Med Imaging Graph 2014;38:628-38. https://doi.org/10.1016/j.compmedimag.2014.04.001
  19. Bayram F, Cakiroglu M. DIFFRACT: DIaphyseal Femur FRActure Classifier SysTem. Biocybern Biomed Eng 2016;36:157-71. https://doi.org/10.1016/j.bbe.2015.10.003
  20. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-10. https://doi.org/10.1001/jama.2016.17216
  21. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-8. https://doi.org/10.1038/nature21056
  22. Nam JG, Park S, Hwang EJ, Lee JH, Jin KN, Lim KY, et al. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology 2019;290:218-28. https://doi.org/10.1148/radiol.2018180237
  23. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017;318:2199-210. https://doi.org/10.1001/jama.2017.14585
  24. Luo H, Xu G, Li C, He L, Luo L, Wang Z, et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol 2019;20:1645-54. https://doi.org/10.1016/s1470-2045(19)30637-0
  25. Nishimoto S, Sotsuka Y, Kawai K, Ishise H, Kakibuchi M. Personal computer-based cephalometric landmark detection with deep learning, using cephalograms on the internet. J Craniofac Surg 2019;30:91-5. https://doi.org/10.1097/SCS.0000000000004901
  26. Dhar R, Falcone GJ, Chen Y, Hamzehloo A, Kirsch EP, Noche RB, et al. Deep learning for automated measurement of hemorrhage and perihematomal edema in supratentorial intracerebral hemorrhage. Stroke 2020;51:648-51. https://doi.org/10.1161/strokeaha.119.027657
  27. Ironside N, Chen CJ, Mutasa S, Sim JL, Ding D, Marfatiah S, et al. Fully automated segmentation algorithm for perihematomal edema volumetry after spontaneous intracerebral hemorrhage. Stroke 2020;51:815-23. https://doi.org/10.1161/strokeaha.119.026764
  28. Sharrock MF, Mould WA, Ali H, Hildreth M, Awad IA, Hanley DF, et al. 3D deep neural network segmentation of intracerebral hemorrhage: development and validation for clinical trials. Neuroinformatics 2021;19:403-15. https://doi.org/10.1007/s12021-020-09493-5
  29. Zhao X, Chen K, Wu G, Zhang G, Zhou X, Lv C, et al. Deep learning shows good reliability for automatic segmentation and volume measurement of brain hemorrhage, intraventricular extension, and peripheral edema. Eur Radiol 2021;31:5012-20. https://doi.org/10.1007/s00330-020-07558-2
  30. Ryu JY, Eo PS, Lee JS, Lee JW, Lee SJ, Lee JM, et al. Surgical approach for venous malformation in the head and neck. Arch Craniofac Surg 2019;20:304-9. https://doi.org/10.7181/acfs.2019.00416
  31. Mundt JC, Vogel AP, Feltner DE, Lenderking WR. Vocal acoustic biomarkers of depression severity and treatment response. Biol Psychiatry 2012;72:580-7. https://doi.org/10.1016/j.biopsych.2012.03.015
  32. Benba A, Jilbab A, Hammouch A. Discriminating between patients with Parkinson's and neurological diseases using cepstral analysis. IEEE Trans Neural Syst Rehabil Eng 2016;24:1100-8. https://doi.org/10.1109/TNSRE.2016.2533582
  33. Lee YW, Bae YC, Park SM, Nam SB, Seo HJ, Kim GW. Outcomes of a superiorly-based pharyngeal flap for the correction of velopharyngeal dysfunction. Arch Craniofac Surg 2020;21:22-6. https://doi.org/10.7181/acfs.2019.00731
  34. Nam SM. Surgical treatment of velopharyngeal insufficiency. Arch Craniofac Surg 2018;19:163-7. https://doi.org/10.7181/acfs.2018.02082
  35. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence N, Weinberger KQ, editors. Advances in neural information processing systems 27. Red Hook: Curran; 2014. p. 2672-80.
  36. Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. Paper presented at: 2017 IEEE International Conference on Computer Vision; 2017 Oct 22-29; Venice, Italy.
  37. Mirza M, Osindero S. Conditional generative adversarial nets. arXiv 1411.1784 [Preprint]. 2014 [cited 2021 Sep 28]. https://arxiv.org/abs/1411.1784.
  38. Karras T, Aila T, Laine S, Lehtinen J. Progressive growing of GANs for improved quality, stability, and variation. arXiv 1710.10196 [Preprint]. 2018 [cited 2021 Sep 28]. https://arxiv.org/abs/1710.10196.
  39. Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, van den Berg CAT, Isgum I. Deep MR to CT synthesis using unpaired data. In: Gooya A, Frangi AF, Tsaftaris SA, Prince JL, editors. Simulation and Synthesis in Medical Imaging. Cham: Springer; 2017. p. 14-23.
  40. Hong JY, Han K, Jung JH, Kim JS. Association of exposure to diagnostic low-dose ionizing radiation with risk of cancer among youths in South Korea. JAMA Netw Open 2019;2:e1910584. https://doi.org/10.1001/jamanetworkopen.2019.10584
  41. Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. IEEE Trans Pattern Anal Mach Intell 2020 Feb 2 [Epub]. https://doi.org/10.1109/TPAMI.2020.2970919.
  42. Chang HH, Moura JMF. Biomedical signal processing. In: Kutz M, editor, Biomedical engineering and design handbook. Vol. 1. 2nd ed. New York: McGraw-Hill; 2010. p. 559-79.
  43. Galloway CD, Valys AV, Shreibati JB, Treiman DL, Petterson FL, Gundotra VP, et al. Development and validation of a deep-earning model to screen for hyperkalemia from the electro-cardiogram. JAMA Cardiol 2019;4:428-36. https://doi.org/10.1001/jamacardio.2019.0640
  44. Kwon JM, Jeon KH, Kim HM, Kim MJ, Lim S, Kim KH, et al. Deep-learning-based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes. Resuscitation 2019;139:84-91. https://doi.org/10.1016/j.resuscitation.2019.04.007
  45. Suh JM, Chung CH, Chang YJ. Head and neck reconstruction using free flaps: a 30-year medical record review. Arch Craniofac Surg 2021;22:38-44. https://doi.org/10.7181/acfs.2020.00745
  46. Marchesi A, Garieri P, Amendola F, Marcelli S, Vaienti L. Intraoperative near-infrared spectroscopy for pedicled perforator flaps: a possible tool for the early detection of vascular issues. Arch Plast Surg 2021;48:457-61. https://doi.org/10.5999/aps.2019.00311
  47. Salgarello M, Pagliara D, Rossi M, Visconti G, Barone-Adesi L. Postoperative monitoring of free DIEP flap in breast reconstruction with near-infrared spectroscopy: variables affecting the regional oxygen saturation. J Reconstr Microsurg 2018;34:383-8. https://doi.org/10.1055/s-0038-1636527
  48. Akita S, Mitsukawa N, Tokumoto H, Kubota Y, Kuriyama M, Sasahara Y, et al. Regional oxygen saturation index: a novel criterion for free flap assessment using tissue oximetry. Plast Reonstr Surg 2016;138:510e-518e. https://doi.org/10.1097/PRS.0000000000002498