Acknowledgement
The authors thank for the support of National Natural Science Foundation of China (No. 11772095), the support of the National Key Research and Development Program of China (No.2016YFB0700103), the supports of the foundation from Science and Technology on Reactor System Design Technology Laboratory.
References
- A.L. Hanson, D. Diamond, Calculation of Design Parameters for an Equilibrium LEU Core in the NBSR, 2011.
- R. Ahmed, Aslam, N. Ahmad, M.J. Khan, et al., A study of reduction in fuel requirement and enhancement of neutron flux in typical MTR type research reactors, Prog. Nucl. Energy 49 (2007) 172-179. https://doi.org/10.1016/j.pnucene.2006.12.001
- R. Newell, Y. Park, A. Mehta, et al., Mechanical properties examined by nanoindentation for selected phases relevant to the development of monolithic uranium-molybdenum metallic fuels, J. Nucl. Mater. 487 (2017) 443-452. https://doi.org/10.1016/j.jnucmat.2017.02.018
- Z. Mei, L. Liang, Y.S. Kim, T. Wiencek, et al., Grain growth and bubble evolution in U-Mo alloy by multiscale simulations, in: International Meeting on RETER 2015-36th International Meeting on Reduced Enrichment for Research and Test Reactors, Seoul, South Korea, 2015.
- D.E. Burkes, T. Hartmann, R. Prabhakaran, et al., Microstructural characteristics of DU-xMo alloys with x = 7-12 wt%, J. Alloys Compd. 479 (2009) 140-147. https://doi.org/10.1016/j.jallcom.2008.12.063
- D.J. Turkoglu, Z. Wu, R.E. Williams, et al., Neutronic performance characteristics of different LEU fuels in a proposed NIST research reactor, Ann. Nucl. Energy 128 (2019) 209-215. https://doi.org/10.1016/j.anucene.2019.01.006
- L. Cheng, A. Hanson, D. Diamond, et al., Safety Analysis Report (SAR) for License Renewal for the National Institute of Standards and Technology Reactor, 2004.
- J.S. Baek, L.Y. Cheng, D. Diamond, Analysis of LOCA Scenarios in the NIST research reactor before and after fuel conversion, Nucl. Technol. 185 (2015) 1-20. https://doi.org/10.13182/nt13-26
- Z. Wu, R.E. Williams, J.M. Rowe, et al., Neutronics and safety studies on a research reactor concept for an advanced neutron source, Nucl. Technol. 199 (2017) 67-82. https://doi.org/10.1080/00295450.2017.1335146
- X. Jian, F. Yan, X. Kong, et al., Effects of U-Mo irradiation creep coefficient on the mesoscale mechanical behavior in U-Mo/Al monolithic fuel plates, Nuclear Materials and Energy 21 (2019) 100706. https://doi.org/10.1016/j.nme.2019.100706
- Y. Deng, Y. Wu, D. Zhang, et al., Thermal-mechanical coupling behavior analysis on metal-matrix dispersed plate-type fuel, Prog. Nucl. Energy 95 (2017) 8-22. https://doi.org/10.1016/j.pnucene.2016.11.007
- M.K. Meyer, J. Gan, J.F. Jue, et al., Irradiation performance of U-Mo monolithic fuel, Nuclear Engineering & Technology 46 (2014) 169-182. https://doi.org/10.5516/NET.07.2014.706
- J. Rest, Evolution of fission-gas-bubble-size distribution in recrystallized U-10Mo nuclear fuel, J. Nucl. Mater. 407 (2010) 55-58. https://doi.org/10.1016/j.jnucmat.2010.07.009
- Y.S. Kim, G.L. Hofman, Fission product induced swelling of U-Mo alloy fuel, J. Nucl. Mater. 419 (2011) 291-301. https://doi.org/10.1016/j.jnucmat.2011.08.018
- J.L. Schulthess, W.R. Lloyd, B. Rabin, et al., Mechanical properties of irradiated UMo alloy fuel, J. Nucl. Mater. 515 (2019) 91-106. https://doi.org/10.1016/j.jnucmat.2018.12.025
- D. Salvato, A. Leenaers, S. Van den Berghe, et al., Pore pressure estimation in irradiated UMo, J. Nucl. Mater. 510 (2018) 1-16. https://doi.org/10.1016/j.jnucmat.2018.07.051
- A.B. Robinson, D.M. Wachs, D.E. Burkes, et al., US RERTR Fuel Development Post Irradiation Examination Results, 2008.
- X. Jian, X. Kong, S. Ding, A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles, Nuclear Engineering & Technology 51 (2019) 1575-1588. https://doi.org/10.1016/j.net.2019.04.011
- Y.S. Kim, G.L. Hofman, J.S. Cheon, et al., Fission induced swelling and creep of U-Mo alloy fuel, J. Nucl. Mater. 437 (2013) 37-46. https://doi.org/10.1016/j.jnucmat.2013.01.346
- F. Yan, X. Jian, S. Ding, Effects of UMo irradiation creep on the thermomechanical behavior in monolithic UMo/Al fuel plates, J. Nucl. Mater. 524 (2019) 209-217. https://doi.org/10.1016/j.jnucmat.2019.07.006
- Q. Lu, S. Qiu, G.H. Su, Development of a thermal-hydraulic analysis code for research reactors with plate fuels, Ann. Nucl. Energy 36 (2009) 433-447. https://doi.org/10.1016/j.anucene.2008.11.038
- T. Singh, J. Kumar, T. Mazumdar, et al., Development of neutronics and thermal hydraulics coupled code-SAC-RIT for plate type fuel and its application to reactivity initiated transient analysis, Ann. Nucl. Energy 62 (2013) 61-80. https://doi.org/10.1016/j.anucene.2013.06.002
- A. Wanninger, M. Seidl, R. Maci an-Juan, Mechanical analysis of the bow deformation of a row of fuel assemblies in a PWR core, Nuclear Engineering & Technology 50 (2018) 297-305. https://doi.org/10.1016/j.net.2017.12.009
- S. Min, Y. Li, C. Ping, et al., Preliminary numerical simulation of fuel assembly deformation under non-homogeneous irradiation environment, Nucl. Power Eng. (2017) 7-10, 038.
- F. Yan, Y. Zhao, S. Ding, Effect of fuel meat thickness on the non-uniform irradiation-induced thermo-mechanical behavior in monolithic UMo/Al fuel plates, in: International Conference on Nuclear Engineering, 2017.
- N.E. Woolstenhulme, R.B. Nielson, M.H. Sprenger, et al., DDE-MURR Status Report of Conceptual Design Activities, 2012.
- Y. Zhao, X. Gong, S. Ding, Simulation of the irradiation-induced thermo-mechanical behaviors evolution in monolithic U-Mo/Zr fuel plates under a heterogeneous irradiation condition, Nucl. Eng. Des. 285 (2015) 84-97. https://doi.org/10.1016/j.nucengdes.2014.12.030
- H.J. Kim, J.S. Yim, B.H. Lee, et al., Drop impact analysis of plate-type fuel assembly in research reactor, Nuclear Engineering and Technology 46 (2014) 529-540. https://doi.org/10.5516/NET.09.2013.103
- N. Brown, J. Baek, A. Hanson, et al., Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion, 2013.
- S. Ding, Y. Huo, X. Yan, Modeling of the heat transfer performance of platetype dispersion nuclear fuel elements, J. Nucl. Mater. 392 (2009) 498-504. https://doi.org/10.1016/j.jnucmat.2009.04.015
- Y. Cui, S. Ding, Z. Chen, et al., Modifications and applications of the mechanistic gaseous swelling model for UMo fuel, J. Nucl. Mater. 457 (2015) 157-164. https://doi.org/10.1016/j.jnucmat.2014.11.065
- X. Gong, S. Ding, Y. Zhao, Effects of irradiation hardening and creep on the thermo-mechanical behaviors in inert matrix fuel elements, Mech. Mater. 65 (2013) 110-123. https://doi.org/10.1016/j.mechmat.2013.05.008
- S. Ding, Y. Zhao, J. Wan, X. Gong, et al., Simulation of the irradiation induced micro-thermo-mechanical behaviors evolution in ADS nuclear fuel pellets, J. Nucl. Mater. 442 (2013) 90-99. https://doi.org/10.1016/j.jnucmat.2013.08.039
- Y. Zhao, X. Gong, S. Ding, et al., A numerical method for simulating the nonhomogeneous irradiation effects in full-sized dispersion nuclear fuel plates, Int. J. Mech. Sci. 81 (2014) 174-183. https://doi.org/10.1016/j.ijmecsci.2014.02.012
- Y. Zhao, S. Ding, Y. Huo, et al., Irradiation-induced thermomechanical behavior in ADS composite fuel pellets: mechanism and main influencing factors, J. Therm. Stresses 39 (6) (2016) 630-657. https://doi.org/10.1080/01495739.2016.1169117
- Y. Zhao, S. Ding, X. Gong, et al., Effects of fuel particle size and fission fragment enhanced irradiation creep on the in pile behavior in CERCER composite pellets, J. Nucl. Mater. 482 (2016) 278-293. https://doi.org/10.1016/j.jnucmat.2016.10.035
- Y. Zhao, X. Gong, Y. Cui, et al., Simulation of the fission-induced swelling and creep in the CERCER fuel pellets, Mater. Des. 89 (2016) 183-195. https://doi.org/10.1016/j.matdes.2015.09.135
- X. Gong, Y. Zhao, S. Ding, A new method to simulate the micro-thermomechanical behaviors evolution in dispersion nuclear fuel elements, Mech. Mater. 77 (2014) 14-27. https://doi.org/10.1016/j.mechmat.2014.06.004
- M.F. Marchbanks, ANS Materials Databook, ORNUM-4582, 1995.
- S.J. Miller, H. Ozaltun, Evaluation of U10Mo Fuel Plate Irradiation Behavior via Numerical and Experimental Benchmarking, 2012.
- Q. Meng, Z. Wang, Creep damage models and their applications for crack growth analysis in pipes: a review, Eng. Fract. Mech. 205 (2019) 547-576. https://doi.org/10.1016/j.engfracmech.2015.09.055
- X. Iltis, M. Ben Saada, H. Mansour, et al., A new characterization approach for studying relationships between microstructure and creep damage mechanisms of uranium dioxide, J. Nucl. Mater. 474 (2016) 1-7. https://doi.org/10.1016/j.jnucmat.2016.02.027
- M.K. Meyer, G.A. Moore, J.F. Jue, Investigation of the Cause of Low Blister Threshold Temperatures in the RERTR-12 and AFIP-4 Experiments, 2012.
- G. Mishuris, A. Oechsner, Edge effects connected with thin interphases in composite materials, Compos. Struct. 68 (2005) 409-417. https://doi.org/10.1016/j.compstruct.2004.04.007
- A. Nayak, Elasto-plastic analysis of initially-stressed plates using a 3D degenerated Mindlin-Kirchhoff shell element, in: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007.
- T.J.R. Hughes, W.K. Liu, Nonlinear finite element analysis of shells: Part I. three-dimensional shells, Comput. Methods Appl. Mech. Eng. 26 (1981) 331-362. https://doi.org/10.1016/0045-7825(81)90121-3
Cited by
- A new method to simulate dispersion plate-type fuel assembly in a multi-physics coupled way vol.166, 2021, https://doi.org/10.1016/j.anucene.2021.108734