과제정보
Equipment of CUC "Far Eastern Center of Structural Investigations" was used in this work.
참고문헌
- J.A. Sawicki, Analyses of fuel crud and coolant-borne corrosion products in normal water chemistry BWRs, J. Nucl. Mater. 419 (2011) 85-96, https://doi.org/10.1016/j.jnucmat.2011.08.032.
- J.A. Sawicki, P.J. Sefranek, S. Fisher, Depth distribution and chemical form of iron in low cross-linked crud-removing resin beds, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 142 (1998) 122-132, https://doi.org/10.1016/S0168-583X(98)00231-6.
- M. Hoshi, E. Tachikawa, T. Suwa, C. Sagawa, C. Yonezawa, I. Aoyama, K. Yamamoto, Crud behaviors in high-temperature water, (I): characterization of water in JMTR OWL-1 loop, J. Nucl. Sci. Technol. 23 (1986) 511-521, https://doi.org/10.1080/18811248.1986.9735014.
- T.-L. Tsai, T.-Y. Lin, T.-Y. Su, H.-J. Wei, L.-C. Men, T.-J. Wen, Identification of chemical composition of CRUD depositing on fuel surface of a boiling water reactor (BWR-6) plant, Energy Procedia 14 (2012) 867-872, https://doi.org/10.1016/j.egypro.2011.12.1025.
- S. Chaturvedi, P.N. Dave, Removal of iron for safe drinking water, Desalination 303 (2012) 1-11, https://doi.org/10.1016/j.desal.2012.07.003.
- K. Otoha, T. Izumi, T. Hayashi, Y. Morikawa, H. Murabayashi, Crud removal performance with ion exchange resins in BWR plants, J. Nucl. Sci. Technol. 33 (1996) 10, https://doi.org/10.1080/18811248.1996.9731861.
- I. Inami, T. Baba, Study on the interaction between iron(III) hydroxide oxide and cation exchange resins, Bull. Chem. Soc. Jpn. 68 (1995) 2067-2072, https://doi.org/10.1246/bcsj.68.2067.
- S.D. Park, J.S. Kim, S.H. Han, K.Y. Jee, Distribution characteristics of 14C and 3H in spent resins from the Canada deuterium uranium-pressurized heavy water reactors (CANDU-PHWRs) of Korea, J. Radioanal. Nucl. Chem. 277 (2008) 503-511, https://doi.org/10.1007/s10967-007-7112-4.
- J. Li, J. Wang, Advances in cement solidification technology for waste radioactive ion exchange resins: a review, J. Hazard Mater. 135 (2006) 443-448, https://doi.org/10.1016/j.jhazmat.2005.11.053.
- K. Korpiola, J. Jarvinen, K. Penttila, P. Kotiluoto, Modeling of incineration of spent ion exchange resins of boiling water and pressurized water nuclear reactors, Nucl. Technol. 172 (2010) 230-236, https://doi.org/10.13182/NT10-A10908.
- V. Luca, H.L. Bianchi, F. Allevatto, J.O. Vaccaro, A. Alvarado, Low temperature pyrolysis of simulated spent anion exchange resins, J. Environ. Chem. Eng. 5 (2017) 4165-4172, https://doi.org/10.1016/j.jece.2017.07.064.
- L. Xu, X. Meng, M. Li, W. Li, Z. Sui, J. Wang, J. Yang, Dissolution and degradation of nuclear grade cationic exchange resin by Fenton oxidation combining experimental results and DFT calculations, Chem. Eng. J. 361 (2019) 1511-1523, https://doi.org/10.1016/j.cej.2018.09.169.
- T.-H. Cheng, C.-P. Huang, Y.-H. Huang, Y.-J. Shih, Kinetic study and optimization of electro-Fenton process for dissolution and mineralization of ion exchange resins, Chem. Eng. J. 308 (2017) 954-962, https://doi.org/10.1016/j.cej.2016.09.142.
- YuP. Korchagin, E.K. Aref'ev, E.Yu Korchagin, Improvement of technology for treatment of spent radioactive ion-exchange resins at nuclear power stations, Therm. Eng. 57 (2010) 593-597, https://doi.org/10.1134/S0040601510070104.
- M. Palamarchuk, A. Egorin, E. Tokar, M. Tutov, D. Marinin, V. Avramenko, Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins, J. Hazard Mater. 321 (2017) 326-334, https://doi.org/10.1016/j.jhazmat.2016.09.005.
- J. Zhao, J. Brugger, A. Pring, Mechanism and kinetics of hydrothermal replacement of magnetite by hematite, Geosci. Front. 10 (2019) 29-41, https://doi.org/10.1016/j.gsf.2018.05.015.
- P.S. Sidhu, Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids, Clay Clay Miner. 29 (1981) 269-276, https://doi.org/10.1346/CCMN.1981.0290404.
- R. Torres, M.A. Blesa, E. Matijevic, Interactions of metal hydrous oxides with chelating agents: IX. Reductive dissolution of hermatite and magnetite by aminocarboxylic acids, J. Colloid Interface Sci. 134 (1990) 475-485, https://doi.org/10.1016/0021-9797(90)90157-J.
- S.J. Keny, A.G. Kumbhar, G. Venkateswaran, K. Kishore, Radiation effects on the dissolution kinetics of magnetite and hematite in EDTA- and NTA-based dilute chemical decontamination formulations, Radiat. Phys. Chem. 72 (2005) 475-482, https://doi.org/10.1016/j.radphyschem.2003.12.055.
- Z.-Y. Lu, D.M. Muir, Dissolution of Metal Ferrites and Iron Oxides by HCI under Oxidising and Reducing Conditions, vol. 21, 1988, https://doi.org/10.1016/0304-386X(88)90013-8, 13 9-21.
- C.A. Lanzl, J. Baltrusaitis, D.M. Cwiertny, Dissolution of hematite nanoparticle aggregates: influence of primary particle size, dissolution mechanism, and solution pH, Langmuir 28 (2012) 15797-15808, https://doi.org/10.1021/la3022497.
- T. Echigo, D.M. Aruguete, M. Murayama, M.F. Hochella, Influence of size, morphology, surface structure, and aggregation state on reductive dissolution of hematite nanoparticles with ascorbic acid, Geochem. Cosmochim. Acta 90 (2012) 149-162, https://doi.org/10.1016/j.gca.2012.05.008.
- R. Salmimies, M. Mannila, J. Kallas, A. Hakkinen, Acidic dissolution of hematite: kinetic and thermodynamic investigations with oxalic acid, Int. J. Miner. Process. 110-111 (2012) 121-125, https://doi.org/10.1016/j.minpro.2012.04.001.
- Christophe Siffert, Barbara Sulzberger, Light-induced dissolution of hematite in the presence of oxalate. A case study, Langmuir 7 (1991) 1627-1634, https://doi.org/10.1021/la00056a014.
- M. Taxiarchou, D. Panias, I. Douni, I. Paspaliaris, A. Kontopoulos, Dissolution of hematite in acidic oxalate solutions, Hydrometallurgy 44 (1997) 287-299, https://doi.org/10.1016/S0304-386X(96)00075-8.
- L. Chi, J. Semmler, Electrochemical Regeneration of Spent Ion Exchange Resin (No. AECL-CW-127140-CONF-002), Atomic Energy of Canada Limited, 2010. http://inis.iaea.org/Search/search.aspx?orig_q=RN:49101522. (Accessed 4 November 2020).
- J. Semmler, L. Chi, Treatment of Liquid Waste and Regeneration of Spent Ion Exchange Resin Using Electrochemical Techniques (No. AECL-CW-127140-CONF-003), Atomic Energy of Canada Limited, 2012. http://inis.iaea.org/Search/search.aspx?orig_q=RN:49101523. (Accessed 4 November 2020).
- A. Egorin, E. Tokar, A. Kalashnikova, T. Sokolnitskaya, I. Tkachenko, A. Matskevich, E. Filatov, L. Zemskova, Synthesis and sorption properties towards Sr-90 of composite sorbents based on magnetite and hematite, Materials 13 (2020) 1189, https://doi.org/10.3390/ma13051189.
- A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi, QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD, J. Appl. Crystallogr. 48 (2015) 598-603, https://doi.org/10.1107/S1600576715002319.
- A.D. Mercer, E.A. Lumbard, Corrosion of mild steel in water, Br. Corrosion J. 30 (1995) 43-55, https://doi.org/10.1179/000705995798114177.
- M.L. Hyman, J.E. Savolainen, Removal of Chloride from Aqueous Solutions, US2919972A, 1960. https://patents.google.com/patent/US2919972A/en?oq=US+2919972+%D0%90. (Accessed 7 November 2020).
- I.A. Merkulov, D.V. Tikhomirov, A.I. Korobeinikov, A.S. Dyachenko, A. Yu Zhabin, G.A. Apalkov, V.A. Grigorieva, Method for Extracting Chloride-Ion from Nitrogen-Acute Technological Solutions of Radiochemical Manufacture, RU2678027C1, 2019. https://patents.google.com/patent/RU2678027C1/en?oq=RU+2678027. (Accessed 7 November 2020).
- A. Mucke, A. Raphael Cabral, Redox and nonredox reactions of magnetite and hematite in rocks, Geochemistry 65 (2005) 271-278, https://doi.org/10.1016/j.chemer.2005.01.002.
- S.V. Yanina, K.M. Rosso, Linked reactivity at mineral-water interfaces through bulk crystal conduction, Science 320 (2008) 218-222, https://doi.org/10.1126/science.1154833.
- K.M. Rosso, S.V. Yanina, C.A. Gorski, P. Larese-Casanova, M.M. Scherer, Connecting observations of hematite (α-Fe2O3) growth catalyzed by Fe(II), Environ. Sci. Technol. 44 (2010) 61-67, https://doi.org/10.1021/es901882a.
- B.-H. Jeon, B.A. Dempsey, W.D. Burgos, Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides, Environ. Sci. Technol. 37 (2003) 3309-3315, https://doi.org/10.1021/es025900p.
- G. Horanyi, F.M. Rizmayer, Catalytic activity of a tungsten carbide electrocatalyst in the reduction of HNO3, HNO2, and NH2OH by molecular hydrogen, J. Electroanal. Chem. Interfacial Electrochem. 132 (1982) 119-128, https://doi.org/10.1016/0022-0728(82)85011-0.