DOI QR코드

DOI QR Code

Study on dynamic adsorption and chemical regeneration of Cd(II) from textile effluents by new granular composite based on gluten

  • Louadj, Amel (Laboratoire Eau Environnement et Developpement Durable, Faculte de Technologie, Universite Blida 1) ;
  • Bouras, Omar (Laboratoire Eau Environnement et Developpement Durable, Faculte de Technologie, Universite Blida 1) ;
  • Rebahie, Ihssene (Laboratoire Eau Environnement et Developpement Durable, Faculte de Technologie, Universite Blida 1) ;
  • Cheknane, Omar (Laboratoire Eau Environnement et Developpement Durable, Faculte de Technologie, Universite Blida 1) ;
  • Zermane, Faiza (Laboratoire Eau Environnement et Developpement Durable, Faculte de Technologie, Universite Blida 1)
  • Received : 2020.11.24
  • Accepted : 2021.01.06
  • Published : 2021.06.25

Abstract

Composite granules (named Fe-PILMG) based on both an Algerian montmorillonite with iron and gluten as an inert binder are prepared and used in the elimination of cadmium by dynamic adsorption in fixed bed columns. This study is essentially focused on the adsorption of Cd (II) in dynamic mode on a fixed bed based on Fe-PILMG sorbent granules followed by a study on the chemical regeneration of these new saturated adsorbents. The various regeneration tests are carried out with NaOH solution. The experimental data on the elimination of Cd (II) (pH = 7, T = 20 ± 2℃) in dynamic mode reveal that this adsorption is considerably influenced by the flow rate (2 to 5 mL min-1), Cd (II) initial concentration (20 to 50 mg L-1), and bed height (5 and 15 cm) and that a modification of each of these parameters can strongly influence the efficiency of this process. The assessment of the experimental data is carried out using the Thomas, Yoon & Nelson and Bohart-Adams models. The fit of the experimental and modeled breakthrough curves indicates excellent applicability of the mathematical models studied which is confirmed by high values of the correlation coefficient for the Bohart-Adams model (R2 = 0.99, model constants N0 = 634.87 mg L-1, kBA = 0.079 (L (mg min)-1), from Yoon and Nelson model (R2 = 0.97, ζ = 413.03 min, KYN = 0.0049 min-1), Thomas (R2 = 0.98, q0 = 49.03 mg g-1, KTH = 5.21 mL (mg. min)-1).

Keywords

References

  1. Ahn, H. (2019), "Equilibrium theory analysis of thermal regeneration of a humid adsorption column: Selection of optimal hot purge gas temperature", Chem. Eng. Res. Des., 151, 91-99. https://doi.org/10.1016/j.cherd.2019.08.018.
  2. Ararem, A., Bouras, O. and Arbaoui, F. (2011), "Adsorption of caesium from aqueous solution on binary mixture of iron pillared layered montmorillonite and goethite", Chem. Eng. J., 172(1), 230-236. https://doi.org/10.1016/j.cej.2011.05.095.
  3. Balsamo, M., Budinov, T., Erto, A., Lancia, A., Petrov, B., Petrov, N. and Tsyntsarski, B. (2013), "CO2 adsorption onto synthetic activated carbon: Kinetic, thermodynamic and regeneration studies", Sep. Purif. Tech, 116, 214-221. http://doi.org/10.1016/j.seppur.2013.05.041.
  4. Bleiman, N. and Mishael, Y.G. (2010), "Selenium removal from drinking water by adsorption to chitosanclay composites and oxides: Batch and columns tests", J. Hazard. Mater., 183(1-3), 590-595. http://doi:10.1016/j.jhazmat.2010.07.065.
  5. Bouras, O., Bollinger, J.C. and Baudu, M. (2010), "Effect of humic acids on pentachlorophenol sorption to cetyl-trimethyl-ammonium-modified, Fe- and Al-pillared montmorillonites", Appl. Clay Sci., 50(1), 58-63. https://doi.org/10.1016/j.clay.2010.07.002.
  6. Chabane, L., Cheknane, B., Zermane, F., Bouras, O. and Baudu, M. (2017), "Synthesis and characterization of reinforced hybrid porous beads: Application to the adsorption of malachite green in aqueous solution", Chem. Eng. Res. Des., 120, 291-302. http://doi.org/10.1016/j.cherd.2016.12.014.
  7. Cui, L., Yuan, J., Wang, P., Sun, H., Fan, X. and Wang, Q. (2017), "Facilitation of α-polylysine in TGase-mediated crosslinking modification for gluten and its effect on properties of gluten films", J. Cereal Sci., 73, 108-115. https://doi.org/10.1016/j.jcs.2016.12.006.
  8. Cheknane, B., Zermane, F., Baudu, M., Bouras, O. and Basly, J.P. (2012), "Sorption of basic dyes onto granulated pillared clays: thermodynamic and kinetic studies", J. Colloid Interf. Sci., 381(1), 158-163. http://doi.org/10.1016/j.jcis.2012.05.045.
  9. Chen, S., Yue, Q., Gao, B., Li, Q., Xu, X. and Fu, K. (2012), "Adsorption of Hexavalent Chromium from aqueous solution by modified corn stalk: A fixed bed column study", Bioresource Techcol. J., 113, 114-120. https://doi.org/10.1016/j.biortech.2011.11.110.
  10. Elinder, C.G. (1992), "Cadmium as an environmental hazard", IARC Scientific Publications, 118, 123-132.
  11. Chen, X, He, H.Z, Chen, G.K. and Li, H.S. (2020), "Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil", Scientific Reports, 10(1), 9528. https://doi.org/10.1038/s41598-020-65631-8.
  12. Farrukh, F., Davies, E., Berry, M., Logan, A. and Ahmed, Z. (2019), "BMP4/Smad1 signalling promotes spinal dorsal column axon regeneration and functional recovery after injury", Mol. Neurobiol, 56(10), 6807-6819. https://doi.org/10.1007/s12035-019-1555-9.
  13. Jatta, S., Huang, S. and Liang, C. (2019), "A column study of persulfate chemical oxidative regeneration of toluene gas saturated activated carbon", Chem. Eng. J., 375, 122-134. https://doi.org/10.1016/j.cej.2019.122034.
  14. Khalaf, H., Bouras, O. and Perrichon, V. (1997), "Synthesis and characterization of Al-pillared and cationic surfactant modified Algerian bentonite", Micropor. Maer., 8(3-4), 141-150. https://doi.org/10.1016/S0927-6513(96)00079-X.
  15. Lu, P.J., Lin, H.V., Yu, W.T. and Chern, J.M. (2011), "Chemical regeneration of activated carbon used for dye adsorption", J. Taiwan Inst. Chem. Eng., 42(2), 305-311. https://doi.org/10.1016/j.jtice.2010.06.001.
  16. Louadj, A., Bouras, O., Cheknane, B. and Zermane, F. (2017), "Synthesis of new granular surfactant iron pillared montmorillonite with gluten: application to the removal of cationic dyes in mixture systems", Desalination Water Treat., 918, 315-325. https://doi.org/10.5004/dwt.2017.21588.
  17. Louadj, A. (2019), "Preparation de granules adsorbants innovants a base de geomateriaux et de liant inerte : Etude des parametres influencant l'adsorption dynamique", Ph.D. Dissertation, Blida 1 University, Algeria.
  18. Patel, H. (2019), "Fixed-bed column adsorption study: a comprehensive review", Appl Water Sci., 9(3), 1-17. https://doi.org/10.1007/s13201-019-0927-7.
  19. Davies, P.H., Gorman, W.C., Carlson, C.A. and Brinkman, S.F. (1993), "Effect of hardness on bioavailability and toxicity of cadmium to rainbow trout", Chem Spec. Bioavailab., 5(2), 67-77. https://doi.org/10.1080/09542299.1993.11083205.
  20. Pietro, P., Falciglia, P., Gagliano, E., Brancato, V. and Finocchiaro, G. (2020), "Field technical applicability and cost analysis for microwave based regenerating permeable reactive barriers (MW-PRBs) operating in Cs-contaminated groundwater treatment", J. Environ. Manage., 260, 110-164. https://doi.org/10.1016/j.jenvman.2020.110064.
  21. Songa, W., Xua, X., Tanc, X., Wanga, Y., Ling, T., Gaoa, B. and Yue, Q. (2015), "Column adsorption of perchlorate by amine-crosslinked biopolymerbased resin and its biological, chemical regeneration properties", Carbohyd. Polym., 115, 432-438. https://doi.org/10.1016/j.carbpol.2014.09.010.
  22. Satya, A., Harimawan, A., Haryani, G.S., Abu Hasan Johir, M., Saravanamuthu, V., Hao, N. and Setiadi, T. (2020a), "Batch study of cadmium biosorption by carbon dioxide enriched Aphanothece sp. dried biomass", Water, 12(1), 264. https://doi.org/10.3390/w12010264.
  23. Satya, A., Harimawan, A., Haryani, G.S., Abu Hasan Johir, M., Saravanamuthu, V., Hao N., Setiadi, T., Huu, H.N. and Tjandra, S., (2020b), "Fixed-bed adsorption performance and empirical modelling of cadmium removal using adsorbent prepared from the cyanobacterium Aphanothece sp cultivar", Environ. Technol. Innov., 21, 101194. https://doi.org/10.1016/j.eti.2020.101194.
  24. Satya, A., Harimawan, A., Haryani, G.S. and Setiadi, T. (2017), "Non-linear Isotherm models, cadmium kinetics, and biosorption thermodynamics of dried biomass of native Aphanothece sp. in a Batch system", J. Eng. Technol. Sci., 49(5), 617-638. https://doi.org/10.5614/j.eng.technol.sci.2017.49.5.5.
  25. Thomas, H.C. (1944), "Heterogeneous ion exchange in a flowing system", J. Am. Chem. Soc., 66(10), 1664-1666. https://doi.org/10.1021/ja01238a017.
  26. Vakilia, M., Deng, S., Cagnetta, G., Wang, W., Menga, P., Liu, D. and Yu, G. (2019), "Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review", Sep. Purif. Tech., 224, 373-387. https://doi.org/10.1016/j.seppur.2019.05.040.
  27. Wouters, A.G.B., Rombouts, I., Fierens, E., Brijs, K., Blecker, C. and Delcoura, J.A. (2017), "Impact of ethanol on the air-water interfacial properties of enzymatically hydrolyzed wheat gluten", Colloid Surface A, 529, 659-667. https://doi.org/10.1016/j.colsurfa.2017.06.013.
  28. Yoon, Y.H. and Nelson, J.H. (1984), "Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service life", Am. Industrial Hyg. Assoc. J., 45(8), 509-516. https://doi.org/10.1080/15298668491400197.
  29. Zermane, F., Cheknane, B., Basly, J.P., Bouras, O. and Baudu, M. (2013), "Influence of humic acids on the adsorption of Basic Yellow 28 dye onto an iron organo-inorgano pillared clay and two hydrous ferric oxides", Colloid Interf. Sci., 395, 212-216. https://doi.org/10.1016/j.jcis.2012.12.038.