DOI QR코드

DOI QR Code

Progress in carbon emission reduction technology in fossil fuel-based hydrogen production

  • KEIYINCI, Sinan (Department of Automotive Engineering, Cukurova University) ;
  • AYDIN, Kadir (Department of Mechanical Engineering, Cukurova University)
  • Received : 2021.01.08
  • Accepted : 2021.08.07
  • Published : 2021.06.25

Abstract

Today, almost all hydrogen production is based on fossil fuels. Hydrogen production plants contribute to harmful emissions in the atmosphere, which is one of the causes of global warming. In order to obtain hydrogen as an entirely green energy source, there is an urgent requirement to significantly reduce or even completely eliminate carbon emissions from fossil fuel-based hydrogen production processes. In this context, new efforts should be increased to develop hydrogen production technologies that produce lower levels of harmful emissions. The development of carbon capture technology by the chemical cycle offers great potential to reduce harmful emissions generated during hydrogen production from fossil fuels. In this study, hydrogen production methods from fossil sources have been reviewed and the recent studies of chemical looping technology for hydrogen production were presented.

Keywords

References

  1. Abdalla, A.M., Hossain, S., Nisfindy, O.B., Azad, A.T., Dawood, M. and Azad, A.K. (2018), "Hydrogen production, storage, transportation and key challenges with applications: A review", Energ. Convers. Manage., 165, 602-627. https://doi.org/10.1016/j.enconman.2018.03.088.
  2. Acar, C. and Dincer, I. (2019), "Review and evaluation of hydrogen production options for better environment", J. Clean. Prod., 218, 835-849. https://doi.org/10.1016/j.jclepro.2019.02.046.
  3. Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P. and De Diego, L.F. (2012), "Progress in chemical-looping combustion and reforming technologies", Prog. Energ Combust., 38(2), 215-282. https://doi.org/10.1016/j.pecs.2011.09.001.
  4. Adanez, J., De Diego, L.F., Garcia-Labiano, F., Gayan, P., Abad, A. and Palacios, J.M. (2004), "Selection of oxygen carriers for chemical-looping combustion", Energ. Fuel, 18(2), 371-377. https://doi.org/10.1021/ef0301452.
  5. Alirezaei, I., Hafizi, A., Rahimpour, M.R. and Raeissi, S. (2016), "Application of zirconium modified Cubased oxygen carrier in chemical looping reforming", J. CO2 Utilizat., 14, 112-121. https://doi.org/10.1016/j.jcou.2016.04.007.
  6. Bayham, S.C., Tong, A., Kathe, M. and Fan, L.S. (2016), "Chemical looping technology for energy and chemical production", Wiley Interdiscipl. Rev. Energ. Environ., 5(2), 216-241. https://doi.org/10.1002/wene.173.
  7. Bion, N., Duprez, D. and Epron, F. (2012), "Design of nanocatalysts for green hydrogen production from bioethanol", ChemSusChem, 5(1), 76-84. https://doi.org/10.1002/cssc.201100400
  8. Boot-Handford, M.E., Abanades, J.C., Anthony, E.J., Blunt, M.J., Brandani, S., Mac Dowell, N., Fernandez, J.R., Ferrari, M., Gross, R., Hallett, J.P., Haszeldine, R.S., Heptonstall, P., Lyngfelt, A., Makuch, Z., Mangano, E., Porter, R.T.J., Pourkashanian, M., Rochelle, G.T., Shah, N., Yao, J.G. and Paul S. Fennell (2014), "Carbon capture and storage update", Energ. Environ. Sci., 7,(1), 130-189. https://doi.org/10.1039/c3ee42350f.
  9. Borschette, A. (2019), "Green hydrogen opportunities in selected industrial processes workshop summary report", JRC Technical Report 2018, Luxembourg. https://doi.org/10.2760/634063.
  10. Chen, H.L., Lee, H.M., Chen, S.H., Chao, Y. and Chang, M.B. (2008), "Review of plasma catalysis on hydrocarbon reforming for hydrogen production-Interaction, integration, and prospects", Appl. Catal. B Environ., 85(1-2), 1-9. https://doi.org/10.1016/j.apcatb.2008.06.021.
  11. Chen, S., Shi, Q., Xue, Z., Sun, X. and Xiang, W. (2011), "Experimental investigation of chemical-looping hydrogen generation using Al2O3 or TiO2-supported iron oxides in a batch fluidized bed", Int. J. Hydrogen Energ., 36(15), 8915-8926. https://doi.org/10.1016/j.ijhydene.2011.04.204.
  12. Dawood, F., Anda, M. and Shafiullah, G.M. (2020), "Hydrogen production for energy: An overview", Int. J. Hydrogen Energ., 45(7), 3847-3869. https://doi.org/10.1016/j.ijhydene.2019.12.059.
  13. Demirbas, A. (2002), "Hydrogen production from biomass by the gasification process", Energy Sources, 24(1), 59-68. https://doi.org/10.1080/00908310252712307.
  14. Deokattey, S., Bhanumurthy, K., Vijayan, P.K. and Dulera, I.V. (2013), "Hydrogen production using high temperature reactors: An overview", Adv. Energ. Res., 1(1), 13-33. https://doi.org/10.12989/eri.2013.1.1.013.
  15. De Diego, L.F., Garcia-Labiano, F., Adanez, J., Gayan, P., Abad, A., Corbella, B.M. and Palacios, J.M. (2004), "Development of Cu-based oxygen carriers for chemical-looping combustion", Fuel, 83(13), 1749-1757. https://doi.org/10.1016/j.fuel.2004.03.003.
  16. De Diego, L.F., Ortiz, M., Adanez, J., Garcia-Labiano, F., Abad, A. and Gayan, P. (2008), "Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers", Chem. Eng. J, 144(2), 289-298. https://doi.org/10.1016/j.cej.2008.06.004.
  17. Diglio, G., Bareschino, P., Mancusi, E. and Pepe, F. (2016), "Simulation of hydrogen production through chemical looping reforming process in a packed-bed reactor", Chem. Eng. Res. Des., 105, 137-151. https://doi.org/10.1016/j.cherd.2015.11.013.
  18. Dincer, I. and Acar, C. (2014), "Review and evaluation of hydrogen production methods for better sustainability", Int. J. Hydrogen Energ., 40(34), 11094-11111. https://doi.org/10.1016/j.ijhydene.2014.12.035.
  19. Dincer, I. and Acar, C. (2017), "Innovation in hydrogen production", Int. J. Hydrogen Energ., 42(22), 14843-14864. https://doi.org/10.1016/j.ijhydene.2017.04.107.
  20. Dufour, J., Serrano, D.P., Galvez, J.L., Moreno, J. and Gonzalez, A. (2011), "Hydrogen production from fossil fuels: Life cycle assessment of technologies with low greenhouse gas emissions", Energ. Fuel, 25(5), 2194-2202. https://doi.org/10.1021/ef200124d.
  21. EIA (2019), EIA projects nearly 50% increase in world energy usage by 2050, led by growth in Asia; U.S. Energy Information Administration, Washinton DC, U.S.A. https://www.eia.gov/todayinenergy/detail.php?id=42342.
  22. El-Emam, R.S. and Ozcan, H. (2019), "Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production", J. Clean. Prod., 220, 593-609. https://doi.org/10.1016/j.jclepro.2019.01.309.
  23. Garcia, L. (2015), Hydrogen Production by Steam Reforming of Natural Gas and Other Nonrenewable Feedstocks, in Compendium of Hydrogen Energy, Woodhead Publishing, Sawston, U.K.
  24. George, J.F. and Agarwal, A. (2010), "Hydrogen: Another gas with therapeutic potential", Kidney Int., 77(2), 85-87. https://doi.org/10.1038/ki.2009.432.
  25. Gong, A. and Verstraete, D. (2017), "Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: Current status and research needs", Int. J. Hydrogen Energ., 42(33), 21311-21333. https://doi.org/10.1016/j.ijhydene.2017.06.148.
  26. Gu, H., Lang, S., Song, G., Zhang, S., Niu, M., Liu, W. and Shen, L. (2019), "Enhanced chemical looping hydrogen production based on biomass ash-promoted iron ore oxygen carrier", Chem. Eng. J., 360, 260-270. https://doi.org/10.1016/j.cej.2018.11.226.
  27. Hafizi, A., Rahimpour, M.R. and Hassanajili, S. (2015), "Calcium promoted Fe/Al2O3 oxygen carrier for hydrogen production via cyclic chemical looping steam methane reforming process", Int. J. Hydrogen Energ., 40(46), 16159-16168. https://doi.org/10.1016/j.ijhydene.2015.10.021.
  28. Hosseini, S.E. and Wahid, M.A. (2016), "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development", Renew. Sust. Energ. Rev., 57, 850-866. https://doi.org/10.1016/j.rser.2015.12.112.
  29. IEA (2019), The Future of Hydrogen; International Energy Agency, Paris, France. https://www.iea.org/reports/the-future-of-hydrogen.
  30. Johansson, M., Mattisson, T. and Lyngfelt, A. (2006), "Investigation of Mn3O4 with stabilized ZrO2 for chemical-looping combustion", Chem. Eng. Res. Des., 84,(9A), 807-818. https://doi.org/10.1205/cherd.05206.
  31. Kaiwen, L., Bin, Y. and Tao, Z. (2018), "Economic analysis of hydrogen production from steam reforming process: A literature review", Energ. Source Part B, 13(2), 109-115. https://doi.org/10.1080/15567249.2017.1387619.
  32. Kalamaras, C.M. and Efstathiou, A.M. (2013), "Hydrogen production technologies: Current state and future developments", Proceedings of the Conference Papers in Energy, Limassol, Cyprus, November. https://doi.org/10.1155/2013/690627.
  33. Kang, K.S., Kim, C.H., Bae, K.K., Cho, W.C., Kim, S.H. and Park, C.S. (2010), "Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production", Int. J. Hydrogen Energ., 35(22), 12246-12254. https://doi.org/10.1016/j.ijhydene.2010.08.043.
  34. Kang, P., Morrow, G., Zhang, X.L., Wang, T.P., Tan, Z.F. and Agarwal, J. (2017), "Systematic comparison of hydrogen production from fossil fuels and biomass resources", Int. J. Agric. Biol. Eng., 10(6), 192-200. https://doi.org/10.25165/j.ijabe.20171006.2990.
  35. Kayfeci, M., Kecebas, A. and Bayat, M. (2019), Hydrogen Production, in Solar Hydrogen Production: Processes, Academic Press, Cambridge, U.S.A. https://doi.org/10.1016/B978-0-12-814853-2.00003-5.
  36. Khan, M.N. and Shamim, T. (2014), "Investigation of hydrogen production using chemical looping reforming", Energy Procedia, 61, 2034-2037. https://doi.org/10.1016/j.egypro.2014.12.069.
  37. Krawczyk, J., Mazur, A., Sasin, T. and Stoklosa, A. (2014), "Fuel cells as alternative power for unmanned aircraft systems - Current situation and development trends", Prace Instytutu Lotnictwa, 4(237), 49-62.
  38. LeValley, T.L., Richard, A.R. and Fan, M. (2015), "Development of catalysts for hydrogen production through the integration of steam reforming of methane and high temperature water gas shift", Energy, 90, 748-758. https://doi.org/10.1016/j.energy.2015.07.106.
  39. Ma, S., Chen, S., Soomro, A. and Xiang, W. (2017), "Effects of supports on hydrogen production and carbon deposition of Fe-based oxygen carriers in chemical looping hydrogen generation", Int. J. Hydrogen Energ., 42(16), 11006-11016. https://doi.org/10.1016/j.ijhydene.2017.02.132.
  40. Mostafaeipour, A. and Jooyandeh, E. (2017), "Prioritizing the locations for hydrogen production using a hybrid wind-solar system: A case study", Adv. Energ. Res., 5(2), 107-128. https://doi.org/10.12989/eri.2017.5.2.107.
  41. Mostafaeipour, A., Sedaghat, A., Qolipour, M., Rezaei, M., Arabnia, H., Saidi-Mehrabad, M., Shamshirband, S. and Alavi, O. (2017), "Localization of solar-hydrogen power plants in the province of Kerman, Iran", Adv. Energ. Res., 5(2), 179-205. https://doi.org/10.12989/eri.2017.5.2.179.
  42. Muradov, N. (2017), "Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives", Int. J. Hydrogen Energ., 42(20), 14058-14088. https://doi.org/10.1016/j.ijhydene.2017.04.101.
  43. Nandy, A., Loha, C., Gu, S., Sarkar, P., Karmakar, M.K. and Chatterjee, P.K. (2016), "Present status and overview of Chemical Looping Combustion technology", Renew. Sust. Energ. Rev., 59, 597-619. https://doi.org/10.1016/j.rser.2016.01.003.
  44. Nasr, S. and Plucknett, K.P. (2014), "Kinetics of iron ore reduction by methane for chemical looping combustion", Energ. Fuel, 28(2), 1387-1395. https://doi.org/10.1021/ef402142q.
  45. Nikolaidis, P. and Poullikkas, A. (2017), "A comparative overview of hydrogen production processes", Renew. Sust. Energ. Rev., 67, 597-611. https://doi.org/10.1016/j.rser.2016.09.044.
  46. Pans, M.A., Abad, A., De Diego, L.F., Garcia-Labiano, F., Gayan, P. and Adanez, J. (2013), "Optimization of H2 production with CO2 capture by steam reforming of methane integrated with a chemical-looping combustion system", Int. J. Hydrogen Energ., 38(27), 11878-11892. https://doi.org/10.1016/j.ijhydene.2013.06.114.
  47. Park, J.H., Shakkthivel, P., Kim, H.J., Han, M.K., Jang, J.H., Kim, Y.R., Kim, H.S., Shul, Y.G. (2008), "Investigation of metal alloy catalyst for hydrogen release from sodium borohydride for polymer electrolyte membrane fuel cell application", Int. J. Hydrogen Energ., 33(7), 1845-1852. https://doi.org/10.1016/j.ijhydene.2008.01.003.
  48. Protasova, L. and Snijkers, F. (2016), "Recent developments in oxygen carrier materials for hydrogen production via chemical looping processes", Fuel, 181, 75-93. https://doi.org/10.1016/j.fuel.2016.04.110.
  49. Roman Galdamez, J., Garcia, L. and Bilbao, R. (2005), "Hydrogen production by steam reforming of bio-oil using coprecipitated Ni-Al catalysts. Acetic acid as a model compound", Energ. Fuel, 19(3), 1133-1142. https://doi.org/10.1021/ef049718g.
  50. Ryden, M. (2006), Hydrogen Production with Carbon Dioxide Capture by Reforming of Natural Gas Using Chemical-Looping Technologies, Chalmers University of Technology, Goteborg, Sweden.
  51. Ryden, M. (2008), Hydrogen Production from Fossil Fuels with Carbon Dioxide Capture , Using Chemical-Looping Technologies, Chalmers University of Technology, Goteborg, Sweden.
  52. Ryden, M., Jing, D., Kallen, M., Leion, H., Lyngfelt, A. and Mattisson, T. (2014), "CuO-based oxygen-carrier particles for chemical-looping with oxygen uncoupling - Experiments in batch reactor and in continuous operation", Ind. Eng. Chem. Res., 53(15), 6255-6267. https://doi.org/10.1021/ie4039983.
  53. Ryden, M. and Lyngfelt, A. (2006), "Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion", Int. J. Hydrogen Energ., 31(10), 1271-1283. https://doi.org/10.1016/j.ijhydene.2005.12.003.
  54. Ryden, M. and Ramos, P. (2012), "H2 production with CO2 capture by sorption enhanced chemical-looping reforming using NiO as oxygen carrier and CaO as CO2 sorbent", Fuel Processs Technol., 96, 27-36. https://doi.org/10.1016/j.fuproc.2011.12.009.
  55. Salameh, Z. (2014), Renewable Energy System Design, Academic Press, Cambrodge. U.S.A. https://doi.org/10.1016/C2009-0-20257-1.
  56. Salvi, B.L. and Subramanian, K.A. (2015), "Sustainable development of road transportation sector using hydrogen energy system", Renew. Sust. Energ. Rev., 51, 1132-1155. https://doi.org/10.1016/j.rser.2015.07.030.
  57. Salvi, B.L., Subramanian, K.A. and Panwar, N.L. (2013), "Alternative fuels for transportation vehicles: A technical review", Renew. Sust. Energ. Rev., 25, 404-419. https://doi.org/10.1016/j.rser.2013.04.017.
  58. Settar, A., Nebbali, R., Madani, B. and Abboudi, S. (2014), "Improvement steam methane reforming reaction over a catalyst surface using a metal foam support", Proceedings of CONV-14: International Symposium on Convective Heat and Mass Transfer, Kusadasi, Turkey, September. https://doi.org/10.1615/ichmt.2014.intsympconvheatmasstransf.930.
  59. Sharma, S. and Ghoshal, S.K. (2015), "Hydrogen the future transportation fuel: From production to applications", Renew. Sust. Energ. Rev., 43, 1151-1158. https://doi.org/10.1016/j.rser.2014.11.093.
  60. Shiva Kumar, S. and Himabindu, V. (2019), "Hydrogen production by PEM water electrolysis - A review", Mater. Sci. Energ. Technol., 2(3), 442-454. https://doi.org/10.1016/j.mset.2019.03.002.
  61. da Silva Veras, T., Mozer, T.S., da Costa Rubim Messeder dos Santos, D. and da Silva Cesar, A. (2017), "Hydrogen: Trends, production and characterization of the main process worldwide", Int. J. Hydrogen Energ., 42, (4), 2018-2033. https://doi.org/10.1016/j.ijhydene.2016.08.219.
  62. Singh, P., Gaur, M.K., Kushwah, A. and Tiwari, G.N. (2019), "Progress in hybrid greenhouse solar dryer (HGSD): A review", Adv. Energ. Res., 6(2), 145-160. https://doi.org/10.12989/eri.2019.6.2.145.
  63. Sinigaglia, T., Lewiski, F., Santos Martins, M.E. and Mairesse Siluk, J.C. (2017), "Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review", Int. J. Hydrogen Energ., 42, No. 39, 24597-24611. https://doi.org/10.1016/j.ijhydene.2017.08.063.
  64. Siriwardane, R., Tian, H. and Fisher, J. (2015), "Production of pure hydrogen and synthesis gas with Cu-Fe oxygen carriers using combined processes of chemical looping combustion and methane decomposition/reforming", Int. J. Hydrogen Energ., 40(4), 1698-1708. https://doi.org/10.1016/j.ijhydene.2014.11.090.
  65. Spallina, V., Shams, A., Battistella, A., Gallucci, F. and Annaland, M.V.S. (2017), "Chemical looping technologies for H2 production with CO2 capture: Thermodynamic assessment and economic comparison", Energy Procedia, 114, 419-428. https://doi.org/10.1016/j.egypro.2017.03.1184.
  66. Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, P.E., Ekins, P., Shah, N. and Ward, K.R. (2019), "The role of hydrogen and fuel cells in the global energy system", Energ. Environ. Sci., 12(2), 463-491. https://doi.org/10.1039/c8ee01157e.
  67. Stenberg, V., Ryden, M., Mattisson, T. and Lyngfelt, A. (2018), "Exploring novel hydrogen production processes by integration of steam methane reforming with chemical-looping combustion (CLC-SMR) and oxygen carrier aided combustion (OCAC-SMR)", Int. J. Greenhouse Gas Control, 74, 28-39. https://doi.org/10.1016/j.ijggc.2018.01.008.
  68. Svoboda, K., Siewiorek, A., Baxter, D., Rogut, J. and Pohorely, M. (2008), "Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt-based chemical looping process at lower temperatures", Energ. Convers. Manage., 49(2), 221-231. https://doi.org/10.1016/j.enconman.2007.06.036.
  69. Tang, M., Xu, L. and Fan, M. (2015), "Progress in oxygen carrier development of methane-based chemical-looping reforming: A review", Appl. Energ., 151, 143-156. https://doi.org/10.1016/j.apenergy.2015.04.017.
  70. Velazquez Abad, A. and Dodds, P.E. (2017), "Production of hydrogen", Encyclopedia Sust. Technol., 3, 293-304. https://doi.org/10.1016/B978-0-12-409548-9.10117-4.
  71. Voldsund, M., Jordal, K. and Anantharaman, R. (2016), "Hydrogen production with CO2 capture", Int. J. Hydrogen Energ., 41(9), 4969-4992. https://doi.org/10.1016/j.ijhydene.2016.01.009.
  72. de Vos, Y., Jacobs, M., Van Der Voort, P., Van Driessche, I., Snijkers, F. and Verberckmoes, A. (2019), "Sustainable iron-based oxygen carriers for Chemical Looping for Hydrogen Generation", Int. J. Hydrogen Energ., 44(3), 1374-1391. https://doi.org/10.1016/j.ijhydene.2018.11.099.
  73. Wang, Z., Fan, W., Zhang, G. and Dong, S. (2016), "Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production", Appl. Energ., 168, 1-12. https://doi.org/10.1016/j.apenergy.2016.01.076.
  74. Xiong, Y., Zhao, J., Zheng, Z. and Li, W. (2020), "Effect of copper dopant on the mixed cobalt-iron oxides for hydrogen generation via chemical looping redox cycles" Int. J. Hydrogen Energ., 45(53), 28372-28382. https://doi.org/10.1016/j.ijhydene.2020.07.245.
  75. Yamaguchi, D., Tang, L., Burke, N., Chiang, K., Rye, L., Hadley, T. and Lim, S. (2012), "Small scale hydrogen production from metal-metal oxide redox cycles", Hydrog Energy Challenges Perspect, 2, 31-54. https://doi.org/10.5772/50030.
  76. Yilanci, A., Dincer, I. and Ozturk, H.K. (2009), "A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications", Prog. Energ. Combust. Sci., 35(3), 231-244. https://doi.org/10.1016/j.pecs.2008.07.004.
  77. Zhang, X. and Jin, H. (2013), "Thermodynamic analysis of chemical-looping hydrogen generation", Appl. Energ., 112, 800-807. https://doi.org/10.1016/j.apenergy.2013.02.058.
  78. Zhong, H., Ouyang, L.Z., Ye, J.S., Liu, J.W., Wang, H., Yao, X.D. and Zhu, M. (2017), "An one-step approach towards hydrogen production and storage through regeneration of NaBH4", Energ. Storage Mater., 7, 222-228. https://doi.org/10.1016/j.ensm.2017.03.001.