References
- Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. http://doi.org/10.12989/scs.2020.35.1.147.
- Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267.
- Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Des., 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117.
- Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupled Syst. Mech., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575.
- Allahkarami, F. (2020), "Dynamic buckling of functionally graded multilayer graphene nanocomposite annular plate under different boundary conditions in thermal environment", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01169-7.
- Anwariningsih, S.H. (2013), "Development of interactive media for ict learning at elementary school based on student self learning", J. Educ. Learn, 7(154), 121-128. https://doi.org/10.11591/edulearn.v7i2.226.
- Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. http://doi.org/10.12989/scs.2020.34.4.615.
- Ashraf, M.A., Liu, Z., Zhang, D., Pham, B.T. (2020), "Effects of elastic foundation on the large-amplitude vibration analysis of functionally graded GPL-RC annular sector plates", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01068-x.
- Asrari, R., Ebrahimi, F. and Kheirikhah, M. M. (2020), "On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells" Adv. Nano Res., 9(1), 33-45. http://doi.org/10.12989/anr.2020.9.1.033.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://doi.org/10.12989/scs.2019.30.6.603.
- Benferhat, R., Hassaine, D.T., Said, M.M., and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.
- Benferhat, R., Tahar, H.D. and Rabahi, A. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(5), 601-609. https://doi.org/10.12989/eas.2019.16.5.601.
- Benferhat, R., Hassaine D.T. and Abderezak, R. (2020), "Thermomechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupled Syst. Mech., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499.
- Benferhat, R., Hassaine, D.T. and Rabahi, A. (2021), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. http://doi.org/10.12989/cme.2021.3.1.025.
- Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. http://doi.org/10.12989/sem.2020.75.3.357.
- Esmaeili, M. and Beni, Y.T. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. https://doi.org/10.22055/jacm.2019.27857.1439.
- Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique", Steel Compos. Struct., 34(2), 227-239. http://doi.org/10.12989/scs.2020.34.2.227.
- Ghayesh, M.H. (2018a), "Nonlinear vibrations of axially functionally graded Timoshenko tapered beams", J. Comput. Nonlinear Dynam., 13(4), 041002. https://doi.org/10.1115/1.4039191.
- Ghayesh, M.H. (2018b), "Nonlinear dynamics of multilayered microplates", J. Comput. Nonlinear Dynam., 13(2), 021006. https://doi.org/10.1115/1.4037596.
- Ghayesh, M.H. (2019a), "Nonlinear oscillations of FG cantilevers", Appl. Acoust., 145, 393-398. https://doi.org/10.1016/j.apacoust.2018.08.014.
- Ghayesh, M.H. (2019b), "Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams" Compos. Struct., 225(1), 110974. https://doi.org/10.1016/j.compstruct.2019.110974.
- Ghayesh, M.H. (2019c), "Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech. A Solid, 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001.
- Ghayesh, M.H. (2019d), "Viscoelastic dynamics of axially FG microbeams", Int. J. Eng. Sci., 135, 75-85. https://doi.org/10.1016/j.ijengsci.2018.10.005.
- Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Coupled Syst. Mech., 10(1), 61-77. http://doi.org/10.12989/csm.2021.10.1.061.
- Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects", Adv. Nano Res., 9(3), 193-210. http://doi.org/10.12989/anr.2020.9.3.193.
- Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., 39(6), 751-763. http://doi.org/10.12989/scs.2021.39.6.751.
- Huang, Y., Li, X.F.A. (2010), "New approach for free vibration of axially functionally graded beams with non-uniform cross-section", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029.
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment" Struct. Eng. Mech., 73(2), 191-207. http://doi.org/10.12989/sem.2020.73.2.191.
- Koochi, A. and Goharimanesh, M., (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Reports Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g.
- Le, N.L., Nguyen, T.P., Vu, H.N., Nguyen, T.T. and Vu, M.D. (2020), "An analytical approach of nonlinear thermomechanical buckling of functionally graded graphene-reinforced composite laminated cylindrical shells under compressive axial load surrounded by elastic foundation", J. Appl. Comput. Mech., 6(2), 357-372. https://doi.org/10.22055/jacm.2019.29527.1609.
- Li, L., Xiaobai, L., Yujin, H. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010.
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056.
- Liu, W.Q., Liu, S.J., Fan, M.Y., Tian, W., Wang, J. P. and Tahouneh, V (2020), "Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns", Steel Compos. Struct., 35(2), 295-303. http://doi.org/10.12989/scs.2020.35.2.295.
- Lyashenko, I.A., Borysiuk, V.N. and Popov, V.L. (2020), "Dynamical model of the asymmetric actuator of directional motion based on power-law graded materials", Facta Univ. Series Mech. Eng., 18(2), 245 - 254. https://doi.org/10.22190/FUME200129020L.
- Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. http://doi.org/10.12989/sem.2020.75.5.633.
- Mahesh, V., Harursampath, D. (2020), "Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01098-5.
- Moory-Shirbani, M., Sedighi, H.M., Ouakad, H.M. and Najar, F. (2018), "Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential", Compos. Struct., 184(15), 950-960. https://doi.org/10.1016/j.compstruct.2017.10.062.
- Nazemnezhad, R. and Shokrollahi, H. (2020), "Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect", Steel Compos. Struct., 35(3), 449-462. http://doi.org/10.12989/scs.2020.35.3.449.
- Ould, L.L., Kaci, A., Houari, M.S.A., Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct., 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713.
- Phung-Van, P. and Thai, C.H. A (2021), "A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite nanoplates", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-021-01353-3.
- Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027.
- Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
- Sayyad, A.S. and Ghugal, Y.M. (2018), "Analytical solutions for bending, buckling, and vibration analyses of exponential functionally graded higher order beams", Asian J. Civil Eng., 19(5), 607-623. https://doi.org/10.1007/s42107-018-0046-z.
- Sedighi, H.M., Daneshmand, F. (2014), "Static and dynamic pullin instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Technol. 28(9), 3459-3469. https://doi.org/10.1007/s12206-014-0807-x.
- Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020a), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
- Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020b), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading" Adv. Nano Res., 8(1), 49-58 http://doi.org/10.12989/anr.2020.8.1.049.
- Sheng, G.G., Wang, X. (2020), "Nonlinear resonance responses of size-dependent functionally graded cylindrical microshells with thermal effect and elastic medium", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01176-8.
- Simsek, M., Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
- Simsek, M. and Yurtcu, H.H. (2012), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
- Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002.
- Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
- Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217.
- Tran, V.K., Pham, Q.H. and Nguyen-Thoi, T. (2020), "A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations", Eng. Comput., 1-26. https://doi.org/10.1007/s00366-020-01107-7.
- Yang, F., Chong, A., Lam, D. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yuan, Y., Zhao, K., Zhao, Y. and Kiani, K. (2020), "Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", Steel Compos. Struct., 37(5), 551-569. http://doi.org/10.12989/scs.2020.37.5.551.
- Zhang, H., Ma, J., Ding, H. and Chen, L. (2017), "Vibration of axially moving beam supported by viscoelastic foundation", Appl. Math. Mech., 38(2), 161-172. https://doi.org/10.1007/s10483-017-2170-9.
- Zhu, X., Lu, Z., Wang, Z., Xue, L. and Ebrahimi-Mamaghani, A. (2020), "Vibration of spinning functionally graded nanotubes conveying fluid", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01123-7.
- Zohra, Z.F., Lemya, H.H., Abderahman, Y., Mustapha, M., Abdelouahed, T. and Djamel, O. (2017), "Free vibration analysis of functionally graded beams using a higher-order shear deformation theory", Math. Model. Eng. Prob., 4(1)., 7-12. https://doi.org/10.18280/mmep.040102.
- Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://doi.org/10.12989/sem.2021.77.6.797.