DOI QR코드

DOI QR Code

New state-space approach to dynamic analysis of porous FG beam under different boundary conditions

  • Received : 2021.04.24
  • Accepted : 2021.08.07
  • Published : 2021.10.25

Abstract

This paper investigates dynamic behavior of porous functionally graded beams under various boundary conditions using State-space approach. The material parameters of FG beams change continuously along the thickness direction according to the power-law function (PFGM) or sigmoid function (SFGM). The porous FG beams are assumed to have even and uneven distributions of porosities over the beam cross-section. The classical beam theory, first-order and higher-order shear deformation theories are employed to consider beams of various boundary conditions. Hamilton's principle are employed for derivation of the equations of motion. Fundamental frequencies are calculated numerically for different boundary conditions, gradient index, volume fraction of porosity, distribution shape of porosity, and span-to-depth ratios. The results show that the variation of the distribution shape of porosity has an effect on the fundamental frequencies.

Keywords

References

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. http://doi.org/10.12989/scs.2020.35.1.147.
  2. Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267.
  3. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Des., 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117.
  4. Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupled Syst. Mech., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575.
  5. Allahkarami, F. (2020), "Dynamic buckling of functionally graded multilayer graphene nanocomposite annular plate under different boundary conditions in thermal environment", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01169-7.
  6. Anwariningsih, S.H. (2013), "Development of interactive media for ict learning at elementary school based on student self learning", J. Educ. Learn, 7(154), 121-128. https://doi.org/10.11591/edulearn.v7i2.226.
  7. Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. http://doi.org/10.12989/scs.2020.34.4.615.
  8. Ashraf, M.A., Liu, Z., Zhang, D., Pham, B.T. (2020), "Effects of elastic foundation on the large-amplitude vibration analysis of functionally graded GPL-RC annular sector plates", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01068-x.
  9. Asrari, R., Ebrahimi, F. and Kheirikhah, M. M. (2020), "On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells" Adv. Nano Res., 9(1), 33-45. http://doi.org/10.12989/anr.2020.9.1.033.
  10. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://doi.org/10.12989/scs.2019.30.6.603.
  11. Benferhat, R., Hassaine, D.T., Said, M.M., and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.
  12. Benferhat, R., Tahar, H.D. and Rabahi, A. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(5), 601-609. https://doi.org/10.12989/eas.2019.16.5.601.
  13. Benferhat, R., Hassaine D.T. and Abderezak, R. (2020), "Thermomechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupled Syst. Mech., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499.
  14. Benferhat, R., Hassaine, D.T. and Rabahi, A. (2021), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. http://doi.org/10.12989/cme.2021.3.1.025.
  15. Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. http://doi.org/10.12989/sem.2020.75.3.357.
  16. Esmaeili, M. and Beni, Y.T. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. https://doi.org/10.22055/jacm.2019.27857.1439.
  17. Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique", Steel Compos. Struct., 34(2), 227-239. http://doi.org/10.12989/scs.2020.34.2.227.
  18. Ghayesh, M.H. (2018a), "Nonlinear vibrations of axially functionally graded Timoshenko tapered beams", J. Comput. Nonlinear Dynam., 13(4), 041002. https://doi.org/10.1115/1.4039191.
  19. Ghayesh, M.H. (2018b), "Nonlinear dynamics of multilayered microplates", J. Comput. Nonlinear Dynam., 13(2), 021006. https://doi.org/10.1115/1.4037596.
  20. Ghayesh, M.H. (2019a), "Nonlinear oscillations of FG cantilevers", Appl. Acoust., 145, 393-398. https://doi.org/10.1016/j.apacoust.2018.08.014.
  21. Ghayesh, M.H. (2019b), "Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams" Compos. Struct., 225(1), 110974. https://doi.org/10.1016/j.compstruct.2019.110974.
  22. Ghayesh, M.H. (2019c), "Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech. A Solid, 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001.
  23. Ghayesh, M.H. (2019d), "Viscoelastic dynamics of axially FG microbeams", Int. J. Eng. Sci., 135, 75-85. https://doi.org/10.1016/j.ijengsci.2018.10.005.
  24. Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Coupled Syst. Mech., 10(1), 61-77. http://doi.org/10.12989/csm.2021.10.1.061.
  25. Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects", Adv. Nano Res., 9(3), 193-210. http://doi.org/10.12989/anr.2020.9.3.193.
  26. Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., 39(6), 751-763. http://doi.org/10.12989/scs.2021.39.6.751.
  27. Huang, Y., Li, X.F.A. (2010), "New approach for free vibration of axially functionally graded beams with non-uniform cross-section", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029.
  28. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment" Struct. Eng. Mech., 73(2), 191-207. http://doi.org/10.12989/sem.2020.73.2.191.
  29. Koochi, A. and Goharimanesh, M., (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Reports Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g.
  30. Le, N.L., Nguyen, T.P., Vu, H.N., Nguyen, T.T. and Vu, M.D. (2020), "An analytical approach of nonlinear thermomechanical buckling of functionally graded graphene-reinforced composite laminated cylindrical shells under compressive axial load surrounded by elastic foundation", J. Appl. Comput. Mech., 6(2), 357-372. https://doi.org/10.22055/jacm.2019.29527.1609.
  31. Li, L., Xiaobai, L., Yujin, H. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010.
  32. Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056.
  33. Liu, W.Q., Liu, S.J., Fan, M.Y., Tian, W., Wang, J. P. and Tahouneh, V (2020), "Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns", Steel Compos. Struct., 35(2), 295-303. http://doi.org/10.12989/scs.2020.35.2.295.
  34. Lyashenko, I.A., Borysiuk, V.N. and Popov, V.L. (2020), "Dynamical model of the asymmetric actuator of directional motion based on power-law graded materials", Facta Univ. Series Mech. Eng., 18(2), 245 - 254. https://doi.org/10.22190/FUME200129020L.
  35. Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. http://doi.org/10.12989/sem.2020.75.5.633.
  36. Mahesh, V., Harursampath, D. (2020), "Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01098-5.
  37. Moory-Shirbani, M., Sedighi, H.M., Ouakad, H.M. and Najar, F. (2018), "Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential", Compos. Struct., 184(15), 950-960. https://doi.org/10.1016/j.compstruct.2017.10.062.
  38. Nazemnezhad, R. and Shokrollahi, H. (2020), "Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect", Steel Compos. Struct., 35(3), 449-462. http://doi.org/10.12989/scs.2020.35.3.449.
  39. Ould, L.L., Kaci, A., Houari, M.S.A., Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct., 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713.
  40. Phung-Van, P. and Thai, C.H. A (2021), "A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite nanoplates", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-021-01353-3.
  41. Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027.
  42. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
  43. Sayyad, A.S. and Ghugal, Y.M. (2018), "Analytical solutions for bending, buckling, and vibration analyses of exponential functionally graded higher order beams", Asian J. Civil Eng., 19(5), 607-623. https://doi.org/10.1007/s42107-018-0046-z.
  44. Sedighi, H.M., Daneshmand, F. (2014), "Static and dynamic pullin instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Technol. 28(9), 3459-3469. https://doi.org/10.1007/s12206-014-0807-x.
  45. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020a), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  46. Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020b), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading" Adv. Nano Res., 8(1), 49-58 http://doi.org/10.12989/anr.2020.8.1.049.
  47. Sheng, G.G., Wang, X. (2020), "Nonlinear resonance responses of size-dependent functionally graded cylindrical microshells with thermal effect and elastic medium", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01176-8.
  48. Simsek, M., Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
  49. Simsek, M. and Yurtcu, H.H. (2012), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
  50. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002.
  51. Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
  52. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217.
  53. Tran, V.K., Pham, Q.H. and Nguyen-Thoi, T. (2020), "A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations", Eng. Comput., 1-26. https://doi.org/10.1007/s00366-020-01107-7.
  54. Yang, F., Chong, A., Lam, D. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  55. Yuan, Y., Zhao, K., Zhao, Y. and Kiani, K. (2020), "Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", Steel Compos. Struct., 37(5), 551-569. http://doi.org/10.12989/scs.2020.37.5.551.
  56. Zhang, H., Ma, J., Ding, H. and Chen, L. (2017), "Vibration of axially moving beam supported by viscoelastic foundation", Appl. Math. Mech., 38(2), 161-172. https://doi.org/10.1007/s10483-017-2170-9.
  57. Zhu, X., Lu, Z., Wang, Z., Xue, L. and Ebrahimi-Mamaghani, A. (2020), "Vibration of spinning functionally graded nanotubes conveying fluid", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01123-7.
  58. Zohra, Z.F., Lemya, H.H., Abderahman, Y., Mustapha, M., Abdelouahed, T. and Djamel, O. (2017), "Free vibration analysis of functionally graded beams using a higher-order shear deformation theory", Math. Model. Eng. Prob., 4(1)., 7-12. https://doi.org/10.18280/mmep.040102.
  59. Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://doi.org/10.12989/sem.2021.77.6.797.