DOI QR코드

DOI QR Code

Nonlinear electromechanical dynamics of piezoelectric doubly-curved microsystem using modified strain gradient theory

  • Wang, Dongxuan (College of science and technology, Hebei Agricultural University) ;
  • Xing, Yazhou (College of Mechanical and Electrical Engineering, Hebei Agricultural University) ;
  • Zhang, Su (College of Mechanical and Electrical Engineering, Hebei Agricultural University)
  • 투고 : 2021.11.20
  • 심사 : 2021.08.11
  • 발행 : 2021.10.25

초록

This paper is devoted to investigate the nonlinear free vibrations of multi-phase piezoelectric doubly-curved microshells in the context of modified strain gradient elastic (MSGT). The microshell has been made from two constituents for which different compositions have been considered by defining a piezoelectric phase percentage. The microscale effects have been described with the incorporation of three scale coefficients involved in MSGT. With the use of suitable Fourier series and the concept of Galerkin's method, the solution for the governing equations of double-curvature microshell have been provided. The calculated frequencies are dependent on the piezoelectric phase percentage, scale coefficients, curvature radius and applied electric voltage.

키워드

참고문헌

  1. Abdulrazzaq, M.A., Muhammad, A.K., Kadhim, Z.D. and Faleh, N.M. (2020), "Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM", Coupled Syst. Mech., 9(3), 201-217. https://doi.org/10.12989/csm.2020.9.3.201.
  2. Aboudi, J. (2001), "Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites", Smart Mater. Struct., 10(5), 867. https://doi.org/10.1088/0964-1726/10/5/303.
  3. Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020a), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Mater. Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033.
  4. Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020b), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res., 8(2), 157-167. https://doi.org/10.12989/anr.2020.8.2.157.
  5. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monitor. Maint., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  6. Annigeri, A.R., Ganesan, N. and Swarnamani, S. (2007), "Free vibration behaviour of multiphase and layered magneto-electro-elastic beam", J. Sound Vib., 299(1-2), 44-63. https://doi.org/10.1016/j.jsv.2006.06.044.
  7. Barati, M.R. (2017), "Magneto-hygro-thermal vibration behavior of elastically coupled nanoplate systems incorporating nonlocal and strain gradient effects", J. Braz. Soc. Mech. Sci. Eng., 39(11), 4335-4352. https://doi.org/10.1007/s40430-017-0890-x.
  8. Barati, M.R. (2018a), "Nonlocal stress-strain gradient vibration analysis of heterogeneous double-layered plates under hygrothermal and linearly varying in-plane loads", J. Vib. Control, 24(19), 4630-4647. https://doi.org/10.1177%2F1077546317731672. https://doi.org/10.1177%2F1077546317731672
  9. Barati, M.R. (2018b), "Porosity-dependent vibration and dynamic stability of compositionally gradient nanofilms using nonlocal strain gradient theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(17), 3144-3155. https://doi.org/10.1177%2F0954406217729421. https://doi.org/10.1177%2F0954406217729421
  10. Barati, M.R. (2018c), "Temperature and porosity effects on wave propagation in nanobeams using bi-Helmholtz nonlocal strain-gradient elasticity", Eur. Phys. J. Plus, 133(5), 170. https://doi.org/10.1140/epjp/i2018-11993-0.
  11. Barati, M.R. and Shahverdi, H. (2018a), "Forced vibration of porous functionally graded nanoplates under uniform dynamic load using general nonlocal stress-strain gradient theory", J. Vib. Control, 24(20), 4700-4715. https://doi.org/10.1177%2F1077546317733832. https://doi.org/10.1177%2F1077546317733832
  12. Barati, M.R. and Shahverdi, H. (2018b), "Nonlinear thermal vibration analysis of refined shear deformable FG nanoplates: two semi-analytical solutions", J. Braz. Soc. Mech. Sci. Eng., 40(2), 1-15. https://doi.org/10.1007/s40430-018-0968-0.
  13. Chen, R., Cheng, Y., Wang, P., Wang, Y., Wang, Q., Yang, Z. and Su, C. (2021), "Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be (II) from Be(NH2)2 complexing solutions", Chemical Engineering Journal, 421, 129682. https://doi.org/10.1016/j.cej.2021.129682.
  14. Deng, X., Xu, T., Huang, G., Li, Q., Luo, L., Zhao, Y. and Zhu, B. (2020), "Design and fabrication of a novel dual-frequency confocal ultrasound transducer for microvessels super-harmonic Iimaging", IEEE T. Ultrasonics Ferroelectrics Freq. Control, 68(4), 1272-1277. https://doi.org/10.1109/TUFFC.2020.3028505.
  15. Deng, R., Li, M. and Linghu, S. (2021), "Sensitivity analysis of steam injection parameters of steam injection thermal recovery technology", Fresenius Environ. Bull., 30(5), 5385-5394.
  16. Duan, X., Xu, Z., Sun, X., Deng, B. and Liu, J. (2021), "Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone-butanol-ethanol/diesel blend fuels", Energy, 231, 121069. https://doi.org/10.1016/j.energy.2021.121069.
  17. Ebrahimi, F. and Barati, M.R. (2017), "Dynamic modeling of preloaded size-dependent nano-crystalline nano-structures", Appl. Math. Mech., 38(12), 1753-1772. https://doi.org/10.1007/s10483-017-2291-8.
  18. Ebrahimi, F. and Barati, M.R. (2018a), "Free vibration analysis of couple stress rotating nanobeams with surface effect under inplane axial magnetic field", J. Vib. Control, 24(21), 5097-5107. https://doi.org/10.1177%2F1077546317744719. https://doi.org/10.1177%2F1077546317744719
  19. Ebrahimi, F. and Barati, M.R. (2018b), "Vibration analysis of nonlocal strain gradient embedded single-layer graphene sheets under nonuniform in-plane loads", J. Vib. Control, 24(20), 4751-4763. https://doi.org/10.1177%2F1077546317734083. https://doi.org/10.1177%2F1077546317734083
  20. Ebrahimi, F. and Barati, M.R. (2018c), "Hygro-thermal vibration analysis of bilayer graphene sheet system via nonlocal strain gradient plate theory", J. Braz. Soc. Mech. Sci. Eng., 40(9), 1-15. https://doi.org/10.1007/s40430-018-1350-y.
  21. Ebrahimi, F. and Barati, M.R. (2018d), "Static stability analysis of double-layer graphene sheet system in hygro-thermal environment", Microsyst. Technol., 24(9), 3713-3727. https://doi.org/10.1007/s00542-018-3827-0.
  22. Ebrahimi, F. and Barati, M.R. (2018e), "Influence of neutral surface position on dynamic characteristics of in-homogeneous piezo-magnetically actuated nanoscale plates", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(17), 3125-3143. https://doi.org/10.1177%2F0954406217728977. https://doi.org/10.1177%2F0954406217728977
  23. Ebrahimi, F. and Barati, M.R. (2018f), "Vibration analysis of parabolic shear-deformable piezoelectrically actuated nanoscale beams incorporating thermal effects", Mech. Adv. Mater. Struct., 25(11), 917-929. https://doi.org/10.1080/15376494.2017.1323141.
  24. Ebrahimi, F. and Barati, M.R. (2018g), "Nonlocal and surface effects on vibration behavior of axially loaded flexoelectric nanobeams subjected to in-plane magnetic field", Arab. J. Sci. Eng., 43(3), 1423-1433. https://doi.org/10.1007/s13369-017-2943-y.
  25. Ebrahimi, F. and Barati, M.R. (2018h), "Size-dependent thermally affected wave propagation analysis in nonlocal strain gradient functionally graded nanoplates via a quasi-3D plate theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(1), 162-173. https://doi.org/10.1177%2F0954406216674243. https://doi.org/10.1177%2F0954406216674243
  26. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Computat., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.
  27. Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.
  28. Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020a), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Computat. Des., 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
  29. Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020b), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631.
  30. Feng, S., Zuo, C., Zhang, L., Yin, W. and Chen, Q. (2021), "Generalized framework for non-sinusoidal fringe analysis using deep learning", Photonic Res., 9(6), 1084-1098. https://doi.org/10.1364/PRJ.420944.
  31. Guo, J., Chen, J. and Pan, E. (2016), "Static deformation of anisotropic layered magnetoelectroelastic plates based on modified couple-stress theory", Compos. Part B Eng., 107, 84-96. https://doi.org/10.1016/j.compositesb.2016.09.044.
  32. Huang, Z.Q., Yi, S.H., Chen, H.X. and He, X.Q. (2021), "Parameter analysis of damaged region for laminates with matrix defects", J. Sandw. Struct. Mater, 23(2), 580-620. https://doi.org/10.1177%2F1099636219842290. https://doi.org/10.1177%2F1099636219842290
  33. Jiang, T., Liu, Z., Wang, G. and Chen, Z. (2021), "Comparative study of thermally stratified tank using different heat transfer materials for concentrated solar power plant", Energy Rep., 7, 3678-3687. https://doi.org/10.1016/j.egyr.2021.06.021.
  34. Kordestani, H., Zhang, C., Masri, S.F. and Shadabfar, M. (2021), "An empirical time-domain trend line-based bridge signal decomposing algorithm using Savitzky-Golay filter", Struct. Control Health Monit., 28(7), e2750. https://doi.org/10.1002/stc.2750.
  35. Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment", Multidiscip. Model. Mater. Struct., 3(4), 461-476. https://doi.org/10.1163/157361107782106401.
  36. Kunbar, L.A.H., Hamad, L.B., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlinear vibration of smart nonlocal magneto-electroelastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects", Smart Struct. Syst., 25(5), 619-630. https://doi.org/10.12989/sss.2020.25.5.619.
  37. Li, Y. and Shi, Z. (2009), "Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature", Compos. Struct., 87(3), 257-264. https://doi.org/10.1016/j.compstruct.2008.01.012.
  38. Li, Y.S. and Pan, E.S. (2015), "Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory", Int. J. Eng. Sci., 97, 40-59. https://doi.org/10.1016/j.ijengsci.2015.08.009.
  39. Lou, J., He, L., Du, J. and Wu, H. (2016), "Buckling and post-buckling analyses of piezoelectric hybrid microplates subject to thermo-electro-mechanical loads based on the modified couple stress theory", Compos. Struct., 153, 332-344. https://doi.org/10.1016/j.compstruct.2016.05.107.
  40. Lv, Z., Lou, R. and Singh, A.K. (2020a), "AI empowered communication systems for intelligent transportation systems", IEEE T. Intell. Transp., 22(7). https://doi.org/10.1109/TITS.2020.3017183.
  41. Lv, Z., Chen, D. and Wang, Q. (2020b), "Diversified technologies in internet of vehicles under intelligent edge computing", IEEE T. Intell. Transp., 22(4), 2048-2059. https://doi.org/10.1109/TITS.2020.3019756.
  42. Lv, S. and Liu, Y. (2021), "PLVA: privacy-preserving and lightweight V2I authentication protocol", IEEE T. Intell. Transp. https://doi.org/10.1109/TITS.2021.3059638.
  43. Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", J. Strain Anal. Eng, 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285. https://doi.org/10.1177%2F0309324720917285
  44. Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Phys. A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.
  45. Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
  46. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020d), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
  47. Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B. M. and Hamouda, A.M.S. (2020e), "Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
  48. Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electroelastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.
  49. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.
  50. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020h), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
  51. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020i), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
  52. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020j), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
  53. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020k), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Adv. Concrete Constr., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.
  54. Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020l), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
  55. Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006.
  56. Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020a), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265.
  57. Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2020b), "Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Adv. Nano Res., 8(3), 191-202. https://doi.org/10.12989/anr.2020.8.3.191.
  58. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
  59. Wang, L., Liu, H. T., Ni, Q. and Wu, Y. (2013), "Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure", Int. J. Eng. Sci., 71, 92-101. https://doi.org/10.1016/j.ijengsci.2013.06.006.
  60. Wang, L., Peng, Y., Xie, Y., Chen, B. and Du, Y. (2021), "A new iteration regularization method for dynamic load identification of stochastic structures", Mech. Syst. Signal Pr., 156, 107586. https://doi.org/10.1016/j.ymssp.2020.107586.
  61. Xu, X., Karami, B. and Shahsavari, D. (2021), "Time-dependent behavior of porous curved nanobeam", Int. J. Eng. Sci., 160, 103455. https://doi.org/10.1016/j.ijengsci.2021.103455.
  62. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  63. Zeighampour, H. and Beni, Y.T. (2014), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004.
  64. Zenggang, X., Zhiwen, T., Xiaowen, C., Xue-min, Z., Kaibin, Z. and Conghuan, Y. (2019), "Research on image retrieval algorithm based on combination of color and shape features", J. Signal Proc. Syst., 93(2), 139-146. https://doi.org/10.1007/s11265-019-01508-y.
  65. Zhang, X., Wang, Y., Wang, C., Su, C. Y., Li, Z. and Chen, X. (2018), "Adaptive estimated inverse output-feedback quantized control for piezoelectric positioning stage", IEEE T. Cybernet., 49(6), 2106-2118. https://doi.org/10.1109/TCYB.2018.2826519.
  66. Zhang, J., Wang, M., Tang, Y., Ding, Q., Wang, C., Huang, X. and Yan, F. (2021a), "Angular velocity measurement with improved scale factor based on a wideband-tunable optoelectronic oscillator", IEEE T. Instrum. Meas., 70, 1-9. https://doi.org/10.1109/TIM.2021.3067183.
  67. Zhang, T., Wu, X., Shaheen, S.M., Rinklebe, J., Bolan, N.S., Ali, E.F. and Tsang, D.C. (2021b), "Effects of microorganism-mediated inoculants on humification processes and phosphorus dynamics during the aerobic composting of swine manure", J. Hazard. Mater., 416, 125738. https://doi.org/10.1016/j.jhazmat.2021.125738.
  68. Zhang, L., Zheng, H., Wan, T., Shi, D., Lyu, L. and Cai, G. (2021c), "An integrated control algorithm of power distribution for islanded microgrid based on improved virtual synchronous generator", IET Renew. Power Gener., 15(12), 2674-2685. https://doi.org/10.1049/rpg2.12191.
  69. Zhao, N., Deng, L., Luo, D. and Zhang, P. (2020), "One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor", Appl. Surf. Sci., 526, 146696. https://doi.org/10.1016/j.apsusc.2020.146696