DOI QR코드

DOI QR Code

Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets

  • Kiarasi, Faraz (Department of Mechanical Engineering, University of Eyvanekey) ;
  • Babaei, Masoud (Department of Mechanical Engineering, University of Eyvanekey) ;
  • Mollaei, Somayeh (Department of Civil Engineering, University of Bonab) ;
  • Mohammadi, Mokhtar (Department of Information Technology, College of Engineering and Computer Science, Lebanese French University) ;
  • Asemi, Kamran (Department of Mechanical Engineering, Islamic Azad University)
  • Received : 2021.01.09
  • Accepted : 2021.08.09
  • Published : 2021.10.25

Abstract

Natural frequency analysis of functionally graded porous joined truncated conical-cylindrical shell reinforced by graphene platelet is investigated in this paper. The structure is consisting of a layered model with five kinds of distribution of graphene platelets in a metallic matrix containing open-cell interior pores. To calculate the effective properties of the porous nanocomposite joined shell, the generalized rule of mixture and the modified Halpin-Tsai equations are employed. Four different porosity distributions are assumed along the shell thickness: two kinds of symmetric functionally graded distributions, non-symmetric functionally graded distributions and uniform distribution of porosity. Graded finite element method (GFEM) based on Rayleigh-Ritz energy formulation has been used to solve 2D- axisymmetric elasticity equations. A parametric study is also conducted to show the effects of different geometric parameters, boundary conditions, weight fraction of graphene platelets, porosity coefficient, distribution of porosity and dispersion pattern of graphene platelets on the natural frequencies and mode shapes of the structure.

Keywords

References

  1. Akbas, S.D. (2017a), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375.
  2. Akbas, S.D. (2017b), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579.
  3. Akbas, S.D. (2017c), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.
  4. Akbas, S.D. (2017d), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/jacm.2017.21540.1107
  5. Akbas, S.D. (2018a), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. http://doi.org/10.12989/was.2018.27.1.059.
  6. Akbas, S.D. (2018b), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  7. Asemi, K., Salehi, M. and Akhlaghi, M. (2014), "Transient thermal stresses in functionally graded thick truncated cones by graded finite element method", Int. J. Press. Vessel, 119, 52-61. https://.doi.org/10.1016/j.ijpvp.2014.03.002.
  8. Asemi, K., Babaei, M. and Kiarasi, F. (2020), "Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1822865.
  9. Ashby, M.F., Evans, T., Fleck, N.A., Hutchinson, J., Wadley, H. and Gibson, L. (2000), Metal foams: A design guide, Elsevier.
  10. Asgari, M. (2015), "Two dimensional functionally graded material finite thick hollow cylinder axisymmetric vibration mode shapes analysis based on exact elasticity theory", J. Theor. Appl. Mech., 45(2), https://doi.org/3.10.1515/jtam-2015-0008.
  11. Babaei, M., Asemi, K., Safarpour, P. (2019), "Natural frequency and dynamic analyses of functionally graded saturated porous beam resting on viscoelastic foundation based on higher order beam theory", J. Solid Mech., 11(3), 615-634. https://doi: 10.22034/jsm.2019.666691.
  12. Babaei, M. and Asemi, K. (2020), "Stress analysis of functionally graded saturated porous rotating thick truncated cone", Mech. Based Des. Struct., 1-28. https://doi.org/10.1080/15397734.2020.1753536.
  13. Babaei, M., Asemi, K. and Kiarasi, F. (2020), "Static response and free-vibration analysis of a functionally graded annular elliptical sector plate made of saturated porous material based on 3D finite element method", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1864401.
  14. Babaei, M., Asemi, K. and Kiarasi, F. (2021) "Dynamic analysis of functionally graded rotating thick truncated cone made of saturated porous materials", Thin Wall. Struct., 164, 107852. https://doi.org/10.1016/j.tws.2021.107852.
  15. Bagheri, H., Kiani, Y. and Eslami, M.R. (2017), "Free vibration of joined conical-conical shells", Thin Wall. Struct., 120, 446-457. https://doi.org/10.1016/j.tws.2017.06.032.
  16. Bagheri, H., Kiani, Y. and Eslami, M.R. (2018), "Free vibration of joined conical-cylindrical-conical shells", Acta Mech, 229, 2751-2764. https://doi.org/10.1007/s00707-018-2133-3
  17. Bagheri, H., Kiani, Y., Bagheri, N. and Eslami, M.R. (2020), "Free vibration of joined cylindrical-hemispherical FGM shells", Arch. Appl. Mech., 90, 2185-2199. https://doi.org/10.1007/s00419-020-01715-1.
  18. Bahaadini, R., Saidi, A.R., Arabjamaloei, Z. and Ghanbari-NejadParizi, A. (2019), "Vibration analysis of functionally graded graphene reinforced porous nanocomposite shells", Int. J. Appl. Mech., 11(7)- 1580-1588. doi:10.1142/S1758825119500686.
  19. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. http://doi.org/10.12989/anr.2015.3.1.029.
  20. Chen, M., Xie, K., Jia, W. and Xu, K. (2015), "Free and forced vibration of ring-stiffened conical-cylindrical shells with arbitrary boundary conditions", Ocean Eng., 108(1), 241-256. https://doi.org/10.1016/j.oceaneng.2015.07.065.
  21. Choi, J., Lakes, R. (1995), "Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative poisson's ratio", Int. J. Mech. Sci., 37(1), 51-59. https://doi.org/10.1016/0020-7403(94)00047-N.
  22. Dong, Y.H., Li, Y.H., Chen, D. and Yang, J. (2018), "Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion", Compos. Part B Eng., 145, 1-13. https://doi.org/10.1016/j.compositesb.2018.03.009.
  23. Duarte, I., Ventura, E., Olhero, S. andFerreira, J. M. (2015), "An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes", Carbon, 95, 589-600. https://doi.org/10.1016/j.carbon.2015.08.065.
  24. Ebrahimi, F., Seyfi, A., Dabbagh, A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. http://doi.org/10.12989/sem.2019.71.1.099.
  25. Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.
  26. Gia Ninh, D., Tri Minh, V., Van Tuan, N., Chi Hung, N. and Van Phong, D. (2020), "Novel numerical approach for free vibration of nanocomposite joined conical-cylindrical-conical shells", AIAA J., 59(1), 366-378. https://doi.org/10.2514/1.J059518.
  27. Gibson, L.J., Ashby, M. (1982), "The mechanics of three-dimensional cellular materials", Proc. Math. Phys. Eng. Sci., 382(1782), 43-59. https://doi.org/10.1098/rspa.1982.0088.
  28. Hassani, A., Habibolahzadeh, A. and Bafti, H. (2012), "Production of graded aluminum foams via powder space holder technique", Mater. Des., 40, 510-515. https://doi.org/10.1016/j.matdes.2012.04.024.
  29. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020a), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. http://doi.org/10.12989/anr.2020.8.3.215.
  30. Hussain, M., Naeem, M. N. and Tounsi, A. (2020b), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res., 8(3), 229-244. http://doi.org/10.12989/anr.2020.8.3.229.
  31. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
  32. Irie T., Yamada G. and Muramoto Y. (1984), "Free vibration of joined conical-cylindrical shells", J. Sound Vib., 95(1), 31-39. https://doi.org/10.1016/0022-460X(84)90256-6.
  33. Kang, J.H. (2012), "Three-dimensional vibration analysis of joined thick conical-cylindrical shells of revolution with variable thickness", J. Sound Vib., 331(18), 4187-4198. https://doi.org/10.1016/j.jsv.2012.04.021.
  34. Khadimallah, M.A., Hussain, M., Khedher, K.M., Bouzgarrou, S.M., Al Naim, A.F., Naeem, M.N. and Tounsi, A. (2020), "Vibration of SWCNTs: Consistency and behavior of polynomial law index with Galerkin's model", Adv. Nano Res., 9(4), 251-261. http://doi.org/10.12989/anr.2020.9.4.251
  35. Khosravi, F., Simyari, M., Hosseini, S.A. and Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9(3), 157-172. http://doi.org/10.12989/anr.2020.9.3.157.
  36. Lee, J. (2018), "Free vibration analysis of joined conical-cylindrical shells by matched Fourier-Chebyshev collocation method", J. Mech. Sci. Technol., 32(10), 4601-4612. https://doi.org/10.1007/s12206-018-0907-0.
  37. Lefebvre, L.P., Banhart, J. and Dunand, D.C. (2008), "Porous metals and metallic foams: current status and recent developments", Adv. Eng. Mater., 10(9), 775-787. https://doi.org/10.1002/adem.200800241.
  38. Leissa, A.W. (1993), Vibration of Shells, American Institute of Physics, New York, U.S.A.
  39. Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.
  40. Mittal, G., Dhand, V., Rhee, K.Y., Park, S.J. and Lee, W.R. (2015), "A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites", J. Ind. Eng. Chem., 21, 11-25. https://doi.org/10.1016/j.jiec.2014.03.022.
  41. Nematollahi, M.S., Mohammadi, H., Dimitri, R. and Tornabene, F. (2020), "Nonlinear vibration of functionally graded graphene nanoplatelets polymer nanocomposite sandwich beams", Appl. Sci., 10(16), 5669. https://doi.org/10.3390/app10165669.
  42. Nguyen, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H. and Lee, J. (2019), "NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells", Comput. Method Appl. Mech. Eng., 347, 983-1003. https://doi.org/10.1016/j.cma.2019.01.011.
  43. Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Elsevier, New York, U.S.A.
  44. Qu, Y., Chen, Y., Long, X., Hua, H. and Meng, G. (2013), "A variational method for free vibration analysis of joined cylindrical-conical shells", J. Vib. Control, 19(6), 2319-2334. https://doi.org/10.1177/1077546312456227.
  45. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  46. Shakouri, M. and Kochakzadeh, M.A. (2014), "Free vibration analysis of joined conical shells analytical and experimental study", Thin Wall. Struct., 85(1), 350-358. https://doi.org/10.1016/j.tws.2014.08.022.
  47. Shen, H.S., Lin, F. and Xiang, Y. (2017), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments", Nonlinear Dyn., 90, 899-914. https://doi.org/10.1007/s11071-017-3701-0.
  48. Smith, B.H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W. and Arwade, S. R. (2012), "Steel foam for structures: A review of applications, manufacturing and material properties", J. Constr. Steel Res, 71, 1-10. https://doi.org/10.1016/j.jcsr.2011.10.028.
  49. Soedel, W. (2004), Vibrations of Shells and Plates, Marcel Dekker, New York, U.S.A. https://doi.org/10.1121/1.1873932.
  50. Soureshjani, A.H., Talebitooti, R. and Talebitooti, M. (2020a), "A semi-analytical approach on the effect of external lateral pressure on free vibration of joined sandwich aerospace composite conical-conical shells", Aerosp. Sci. Technol., 99, 105559. https://doi.org/10.1016/j.ast.2019.105559.
  51. Soureshjani, A.H., Talebitooti, R. and Talebitooti M., (2020b), "Thermal effects on the free vibration of joined FG-CNTRC conical-conical shells", Thin Wall. Struct., 156, 106960. https://doi.org/10.1016/j.tws.2020.106960.
  52. Thambiratnam, D.P. and Thevendran, V. (1988), "Optimum design of conical shells for free vibration", Comput. Struct., 29(1), 133-140. https://doi.org/10.1016/0045-7949(88)90178-2.
  53. Tjong, S.C. (2013), "Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets", Mater. Sci. Eng. R Rep., 74(10), 281-350. https://doi.org/10.1016/j.mser.2013.08.001.
  54. Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023
  55. Wicklein, M. and Thoma, K. (2005), "Numerical investigations of the elastic and plastic behaviour of an open-cell aluminium foam", Mater. Sci. Eng., 397(1-2), 391-399. https://doi.org/10.4028/www.scientific.net/AMM.226-228.3.
  56. Wu, S.H., Qu, Y.G., Huang, X. C. and Hua, H. X. (2012), "Free vibration analysis on combined cylindrical-spherical shell", Appl. Mech. Mater., 226, 3-8. https://doi.org/10.4028/www.scientific.net/amm.226-228.3
  57. Xia, X. C., Chen, X. W., Zhang, Z., Chen, X., Zhao, W. M., Liao, B. and Hur, B. (2013), "Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam", J. Magnes. Alloy, 1(4), 330-335. https://doi.org/10.1016/j.jma.2013.11.006.
  58. Xiang, J. and Matsumoto, T. (2011), "Vibration analysis of conical shell based on wavelet finite element method", Trans Jascome, 11, 101-106.
  59. Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/SCS.2020.35.2.249.
  60. Zhao, S., Yang, Z., Kitipornchai, S. and Yang, J. (2020), "Dynamic instability of functionally graded porous arches reinforced by graphene platelets", Thin Wall. Struct., 147, 106491. https://doi.org/10.1016/j.tws.2019.1r06491.
  61. Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005), The Finite Element Method: Its Basis and Fundamentals, Elsevier.