References
- Akbas, S.D. (2017a), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375.
- Akbas, S.D. (2017b), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579.
- Akbas, S.D. (2017c), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.
- Akbas, S.D. (2017d), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/jacm.2017.21540.1107
- Akbas, S.D. (2018a), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. http://doi.org/10.12989/was.2018.27.1.059.
- Akbas, S.D. (2018b), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
- Asemi, K., Salehi, M. and Akhlaghi, M. (2014), "Transient thermal stresses in functionally graded thick truncated cones by graded finite element method", Int. J. Press. Vessel, 119, 52-61. https://.doi.org/10.1016/j.ijpvp.2014.03.002.
- Asemi, K., Babaei, M. and Kiarasi, F. (2020), "Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1822865.
- Ashby, M.F., Evans, T., Fleck, N.A., Hutchinson, J., Wadley, H. and Gibson, L. (2000), Metal foams: A design guide, Elsevier.
- Asgari, M. (2015), "Two dimensional functionally graded material finite thick hollow cylinder axisymmetric vibration mode shapes analysis based on exact elasticity theory", J. Theor. Appl. Mech., 45(2), https://doi.org/3.10.1515/jtam-2015-0008.
- Babaei, M., Asemi, K., Safarpour, P. (2019), "Natural frequency and dynamic analyses of functionally graded saturated porous beam resting on viscoelastic foundation based on higher order beam theory", J. Solid Mech., 11(3), 615-634. https://doi: 10.22034/jsm.2019.666691.
- Babaei, M. and Asemi, K. (2020), "Stress analysis of functionally graded saturated porous rotating thick truncated cone", Mech. Based Des. Struct., 1-28. https://doi.org/10.1080/15397734.2020.1753536.
- Babaei, M., Asemi, K. and Kiarasi, F. (2020), "Static response and free-vibration analysis of a functionally graded annular elliptical sector plate made of saturated porous material based on 3D finite element method", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1864401.
- Babaei, M., Asemi, K. and Kiarasi, F. (2021) "Dynamic analysis of functionally graded rotating thick truncated cone made of saturated porous materials", Thin Wall. Struct., 164, 107852. https://doi.org/10.1016/j.tws.2021.107852.
- Bagheri, H., Kiani, Y. and Eslami, M.R. (2017), "Free vibration of joined conical-conical shells", Thin Wall. Struct., 120, 446-457. https://doi.org/10.1016/j.tws.2017.06.032.
- Bagheri, H., Kiani, Y. and Eslami, M.R. (2018), "Free vibration of joined conical-cylindrical-conical shells", Acta Mech, 229, 2751-2764. https://doi.org/10.1007/s00707-018-2133-3
- Bagheri, H., Kiani, Y., Bagheri, N. and Eslami, M.R. (2020), "Free vibration of joined cylindrical-hemispherical FGM shells", Arch. Appl. Mech., 90, 2185-2199. https://doi.org/10.1007/s00419-020-01715-1.
- Bahaadini, R., Saidi, A.R., Arabjamaloei, Z. and Ghanbari-NejadParizi, A. (2019), "Vibration analysis of functionally graded graphene reinforced porous nanocomposite shells", Int. J. Appl. Mech., 11(7)- 1580-1588. doi:10.1142/S1758825119500686.
- Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. http://doi.org/10.12989/anr.2015.3.1.029.
- Chen, M., Xie, K., Jia, W. and Xu, K. (2015), "Free and forced vibration of ring-stiffened conical-cylindrical shells with arbitrary boundary conditions", Ocean Eng., 108(1), 241-256. https://doi.org/10.1016/j.oceaneng.2015.07.065.
- Choi, J., Lakes, R. (1995), "Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative poisson's ratio", Int. J. Mech. Sci., 37(1), 51-59. https://doi.org/10.1016/0020-7403(94)00047-N.
- Dong, Y.H., Li, Y.H., Chen, D. and Yang, J. (2018), "Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion", Compos. Part B Eng., 145, 1-13. https://doi.org/10.1016/j.compositesb.2018.03.009.
- Duarte, I., Ventura, E., Olhero, S. andFerreira, J. M. (2015), "An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes", Carbon, 95, 589-600. https://doi.org/10.1016/j.carbon.2015.08.065.
- Ebrahimi, F., Seyfi, A., Dabbagh, A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. http://doi.org/10.12989/sem.2019.71.1.099.
- Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.
- Gia Ninh, D., Tri Minh, V., Van Tuan, N., Chi Hung, N. and Van Phong, D. (2020), "Novel numerical approach for free vibration of nanocomposite joined conical-cylindrical-conical shells", AIAA J., 59(1), 366-378. https://doi.org/10.2514/1.J059518.
- Gibson, L.J., Ashby, M. (1982), "The mechanics of three-dimensional cellular materials", Proc. Math. Phys. Eng. Sci., 382(1782), 43-59. https://doi.org/10.1098/rspa.1982.0088.
- Hassani, A., Habibolahzadeh, A. and Bafti, H. (2012), "Production of graded aluminum foams via powder space holder technique", Mater. Des., 40, 510-515. https://doi.org/10.1016/j.matdes.2012.04.024.
- Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020a), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. http://doi.org/10.12989/anr.2020.8.3.215.
- Hussain, M., Naeem, M. N. and Tounsi, A. (2020b), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res., 8(3), 229-244. http://doi.org/10.12989/anr.2020.8.3.229.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
- Irie T., Yamada G. and Muramoto Y. (1984), "Free vibration of joined conical-cylindrical shells", J. Sound Vib., 95(1), 31-39. https://doi.org/10.1016/0022-460X(84)90256-6.
- Kang, J.H. (2012), "Three-dimensional vibration analysis of joined thick conical-cylindrical shells of revolution with variable thickness", J. Sound Vib., 331(18), 4187-4198. https://doi.org/10.1016/j.jsv.2012.04.021.
- Khadimallah, M.A., Hussain, M., Khedher, K.M., Bouzgarrou, S.M., Al Naim, A.F., Naeem, M.N. and Tounsi, A. (2020), "Vibration of SWCNTs: Consistency and behavior of polynomial law index with Galerkin's model", Adv. Nano Res., 9(4), 251-261. http://doi.org/10.12989/anr.2020.9.4.251
- Khosravi, F., Simyari, M., Hosseini, S.A. and Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9(3), 157-172. http://doi.org/10.12989/anr.2020.9.3.157.
- Lee, J. (2018), "Free vibration analysis of joined conical-cylindrical shells by matched Fourier-Chebyshev collocation method", J. Mech. Sci. Technol., 32(10), 4601-4612. https://doi.org/10.1007/s12206-018-0907-0.
- Lefebvre, L.P., Banhart, J. and Dunand, D.C. (2008), "Porous metals and metallic foams: current status and recent developments", Adv. Eng. Mater., 10(9), 775-787. https://doi.org/10.1002/adem.200800241.
- Leissa, A.W. (1993), Vibration of Shells, American Institute of Physics, New York, U.S.A.
- Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.
- Mittal, G., Dhand, V., Rhee, K.Y., Park, S.J. and Lee, W.R. (2015), "A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites", J. Ind. Eng. Chem., 21, 11-25. https://doi.org/10.1016/j.jiec.2014.03.022.
- Nematollahi, M.S., Mohammadi, H., Dimitri, R. and Tornabene, F. (2020), "Nonlinear vibration of functionally graded graphene nanoplatelets polymer nanocomposite sandwich beams", Appl. Sci., 10(16), 5669. https://doi.org/10.3390/app10165669.
- Nguyen, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H. and Lee, J. (2019), "NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells", Comput. Method Appl. Mech. Eng., 347, 983-1003. https://doi.org/10.1016/j.cma.2019.01.011.
- Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Elsevier, New York, U.S.A.
- Qu, Y., Chen, Y., Long, X., Hua, H. and Meng, G. (2013), "A variational method for free vibration analysis of joined cylindrical-conical shells", J. Vib. Control, 19(6), 2319-2334. https://doi.org/10.1177/1077546312456227.
- Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
- Shakouri, M. and Kochakzadeh, M.A. (2014), "Free vibration analysis of joined conical shells analytical and experimental study", Thin Wall. Struct., 85(1), 350-358. https://doi.org/10.1016/j.tws.2014.08.022.
- Shen, H.S., Lin, F. and Xiang, Y. (2017), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments", Nonlinear Dyn., 90, 899-914. https://doi.org/10.1007/s11071-017-3701-0.
- Smith, B.H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W. and Arwade, S. R. (2012), "Steel foam for structures: A review of applications, manufacturing and material properties", J. Constr. Steel Res, 71, 1-10. https://doi.org/10.1016/j.jcsr.2011.10.028.
- Soedel, W. (2004), Vibrations of Shells and Plates, Marcel Dekker, New York, U.S.A. https://doi.org/10.1121/1.1873932.
- Soureshjani, A.H., Talebitooti, R. and Talebitooti, M. (2020a), "A semi-analytical approach on the effect of external lateral pressure on free vibration of joined sandwich aerospace composite conical-conical shells", Aerosp. Sci. Technol., 99, 105559. https://doi.org/10.1016/j.ast.2019.105559.
- Soureshjani, A.H., Talebitooti, R. and Talebitooti M., (2020b), "Thermal effects on the free vibration of joined FG-CNTRC conical-conical shells", Thin Wall. Struct., 156, 106960. https://doi.org/10.1016/j.tws.2020.106960.
- Thambiratnam, D.P. and Thevendran, V. (1988), "Optimum design of conical shells for free vibration", Comput. Struct., 29(1), 133-140. https://doi.org/10.1016/0045-7949(88)90178-2.
- Tjong, S.C. (2013), "Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets", Mater. Sci. Eng. R Rep., 74(10), 281-350. https://doi.org/10.1016/j.mser.2013.08.001.
- Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023
- Wicklein, M. and Thoma, K. (2005), "Numerical investigations of the elastic and plastic behaviour of an open-cell aluminium foam", Mater. Sci. Eng., 397(1-2), 391-399. https://doi.org/10.4028/www.scientific.net/AMM.226-228.3.
- Wu, S.H., Qu, Y.G., Huang, X. C. and Hua, H. X. (2012), "Free vibration analysis on combined cylindrical-spherical shell", Appl. Mech. Mater., 226, 3-8. https://doi.org/10.4028/www.scientific.net/amm.226-228.3
- Xia, X. C., Chen, X. W., Zhang, Z., Chen, X., Zhao, W. M., Liao, B. and Hur, B. (2013), "Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam", J. Magnes. Alloy, 1(4), 330-335. https://doi.org/10.1016/j.jma.2013.11.006.
- Xiang, J. and Matsumoto, T. (2011), "Vibration analysis of conical shell based on wavelet finite element method", Trans Jascome, 11, 101-106.
- Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/SCS.2020.35.2.249.
- Zhao, S., Yang, Z., Kitipornchai, S. and Yang, J. (2020), "Dynamic instability of functionally graded porous arches reinforced by graphene platelets", Thin Wall. Struct., 147, 106491. https://doi.org/10.1016/j.tws.2019.1r06491.
- Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005), The Finite Element Method: Its Basis and Fundamentals, Elsevier.