DOI QR코드

DOI QR Code

Performance of FGM bilayered cylindrical shell placed on cantilever edge

  • Ghamkhar, Madiha (Department of Mathematics and Statistics, University of Agriculture) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Iqbal, Muhammad Zafer (Department of Mathematics and Statistics, University of Agriculture) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Yahya, Ahmad (Nuclear Engineering Department, King Abdulaziz University) ;
  • Khedher, Khaled Mohamed (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Naeem, Muhammad N. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.11.22
  • Accepted : 2021.08.02
  • Published : 2021.10.25

Abstract

Functionally graded materials (FGMs) are designed for specific purpose and applications. Functionally graded materials for bi-layered cylindrical shell was discussed for different boundary conditions. Functionally graded materials (FGMs) are that kind of material in which function and formation may deviate continuously. Cylindrical shells are mainly significant in various fields of science as well as advanced technology of engineering like aerospace engineering, mechanical engineering and civil engineering. Wide applications of cylindrical shell in different fields like aircraft, aerospace and pressure vessels etc. Bi-layered cylindrical shells consist of two layers and in this work, one layer is of FGM material whose constituents are nickel (Ni) and zirconia (Zr) and other is of isotropic material whose constituent is stainless steel. In this work, effect of trigonometric volume fraction law on cantilever FGM bi-layered cylindrical shell with internal pressure has analyzed by using Rayleigh-Ritz technique and Love's shell theory. Present results of FGM bi-layered cylindrical shell are compared with FGM cylindrical shell. Validity of present technique has verified by way of comparisons with current conclusions and those obtained in the past studies.

Keywords

Acknowledgement

The Authors extend their thanks to the Deanship of Scientific Research at King Khalid University for funding this work through the large research groups under grant number RGP. 2/173/42.

References

  1. Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Eur. J. Sci. Res., 36(2), 184-235.
  2. Amabili, M., Pellicano, F. and Paidoussis M.P. (1998), "Nonlinear vibrations of simply Love, A.E.H. (1888), 'On the small free vibrations and deformation of thin elastic shell'", Philos. T. R. Soc. A, 179, 491-549. https://doi.org/10.1098/rsta.1888.0016
  3. Arshad, S.H., Naeem, M.N. and Sultana, N. (2007), "Frequency analysis of functionally graded cylindrical shells with various volume fraction laws", J. Mech. Eng. Sci., 221(12), 1483-1495. https://doi.org/10.1243/09544062JMES738.
  4. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  5. Bellman, R. and Casti. J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247x(71)90110-7
  6. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  7. Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proceedings of the Cambridge philosophical Society, London. U.K., 7(24), 101-111.
  8. Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160(1), 137-160. https://doi.org/10.1006/jsvi.1993.1010.
  9. Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load part II: numerical results", Int. J. Solid Struct., 43(13), 3657-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010.
  10. Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-120 https://doi.org/10.1016/0029-5493(81)90020-0.
  11. Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", J. Appl. Mech., 31(4), 700-701. https://doi.org/10.1115/1.3629733.
  12. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  13. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  14. Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
  15. Farahani, H. and Barati, F. (2015), "Vibration of sumberged functionally graded cylindrical shell based on first order shear deformation theory using wave propagation method", Struct. Eng. Mech., 53(3), 575-587. http://doi.org/10.12989/sem.2015.53.3.575.
  16. Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101(4), 495-510. https://doi.org/10.1016/S0022-460X(85)80067-5
  17. Ghosh, A, Miyamoto, Y, Reimanis, I and Lannutti, J.J. (1997), "Functionally graded materials, manufacture, properties and applications", Am. Ceram. Soc., 76, 171-189.
  18. Golpayegani, I.F. and Ghorbani, E. (2016), "Free vibration analysis of FGM cylindrical shells under non-uniform internal pressure", J. Mater. Environ. Sci., 7(3), 981-992.
  19. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  20. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
  21. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng. 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  22. Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", Compos. Eng., 4(11), 1153-1167. https://doi.org/10.1016/0961-9526(95)91289-S
  23. Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.
  24. Li, S.R., Fu, X.H. and Batra, R.C. (2010), "Free vibration of three-layer circular cylindrical shells with functionally graded middle layer", Mech. Res. Commun., 37(6), 577-580. https://doi.org/10.1016/j.mechrescom.2010.07.006.
  25. Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring support", Int. J. Mech. Sci., 39(4), 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5.
  26. Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
  27. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  28. Moazzez, K., Saeidi Googarchin, H. and Sharifi, S.M.H. (2018), "Natural frequency analysis of a cylindrical shell containing a variably oriented surface crack utilizing Line-Spring model", Thin Wall Struct., 125, 63-75. https://doi.org/10.1016/j.tws.2018.01.009.
  29. Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191(1), 75-91. http/10.1007/s00707-006-0438-0.
  30. Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.
  31. Penzes, R.L.E. and Kraus, H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10(10), 1309-1313. https://doi.org/10.2514/3.6605.
  32. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res, 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  33. Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107(1), 17-28. https://doi.org/10.1016/0022-460X(86)90279-8.
  34. Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells With and Without Longitudinal Stiffeners, National Aeronautic and Space Administration, Springfield, U.S.A.
  35. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  36. Sharma, P., Singh, R., Hussain, H, (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
  37. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
  38. Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202. https://doi.org/10.1115/1.2930412.
  39. Srinivasan, A.V. and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", J. Eng. Industry, 93(4), 1229-1232. https://doi.org/10.1115/1.3428067.
  40. Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites: Part 2 Thermo mechanical behavior", Int. Mater, 42(3), 85-116. https://doi.org/10.1179/imr.1997.42.3.85.
  41. Swaddiwudhipong. S., Tian, J. and Wang, C.M. (1995), "Vibration of cylindrical shells with ring supports", J Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503.
  42. Wang, S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55(6), 1340-1342. https://doi.org/10.1121/1.1914708.
  43. Zhang, L., Xiang, Y. and Wei, G.W. (2006), "Local adaptive differential quadrature for free vibration analysis of cylindrical shells with various boundary conditions" Int. J. Mech. Sci., 48(10), 1126-1138. https://doi.org/10.1016/j.ijmecsci.2006.05.005.
  44. Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Coupled vibration of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62(3), 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1.
  45. Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15(4), 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.