Acknowledgement
The Authors extend their thanks to the Deanship of Scientific Research at King Khalid University for funding this work through the large research groups under grant number RGP. 2/173/42.
References
- Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Eur. J. Sci. Res., 36(2), 184-235.
- Amabili, M., Pellicano, F. and Paidoussis M.P. (1998), "Nonlinear vibrations of simply Love, A.E.H. (1888), 'On the small free vibrations and deformation of thin elastic shell'", Philos. T. R. Soc. A, 179, 491-549. https://doi.org/10.1098/rsta.1888.0016
- Arshad, S.H., Naeem, M.N. and Sultana, N. (2007), "Frequency analysis of functionally graded cylindrical shells with various volume fraction laws", J. Mech. Eng. Sci., 221(12), 1483-1495. https://doi.org/10.1243/09544062JMES738.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Bellman, R. and Casti. J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247x(71)90110-7
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
- Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proceedings of the Cambridge philosophical Society, London. U.K., 7(24), 101-111.
- Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160(1), 137-160. https://doi.org/10.1006/jsvi.1993.1010.
- Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load part II: numerical results", Int. J. Solid Struct., 43(13), 3657-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010.
- Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-120 https://doi.org/10.1016/0029-5493(81)90020-0.
- Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", J. Appl. Mech., 31(4), 700-701. https://doi.org/10.1115/1.3629733.
- Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
- Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
- Farahani, H. and Barati, F. (2015), "Vibration of sumberged functionally graded cylindrical shell based on first order shear deformation theory using wave propagation method", Struct. Eng. Mech., 53(3), 575-587. http://doi.org/10.12989/sem.2015.53.3.575.
- Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101(4), 495-510. https://doi.org/10.1016/S0022-460X(85)80067-5
- Ghosh, A, Miyamoto, Y, Reimanis, I and Lannutti, J.J. (1997), "Functionally graded materials, manufacture, properties and applications", Am. Ceram. Soc., 76, 171-189.
- Golpayegani, I.F. and Ghorbani, E. (2016), "Free vibration analysis of FGM cylindrical shells under non-uniform internal pressure", J. Mater. Environ. Sci., 7(3), 981-992.
- Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
- Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng. 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", Compos. Eng., 4(11), 1153-1167. https://doi.org/10.1016/0961-9526(95)91289-S
- Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.
- Li, S.R., Fu, X.H. and Batra, R.C. (2010), "Free vibration of three-layer circular cylindrical shells with functionally graded middle layer", Mech. Res. Commun., 37(6), 577-580. https://doi.org/10.1016/j.mechrescom.2010.07.006.
- Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring support", Int. J. Mech. Sci., 39(4), 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5.
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
- Moazzez, K., Saeidi Googarchin, H. and Sharifi, S.M.H. (2018), "Natural frequency analysis of a cylindrical shell containing a variably oriented surface crack utilizing Line-Spring model", Thin Wall Struct., 125, 63-75. https://doi.org/10.1016/j.tws.2018.01.009.
- Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191(1), 75-91. http/10.1007/s00707-006-0438-0.
- Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.
- Penzes, R.L.E. and Kraus, H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10(10), 1309-1313. https://doi.org/10.2514/3.6605.
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res, 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
- Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107(1), 17-28. https://doi.org/10.1016/0022-460X(86)90279-8.
- Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells With and Without Longitudinal Stiffeners, National Aeronautic and Space Administration, Springfield, U.S.A.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
- Sharma, P., Singh, R., Hussain, H, (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
- Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
- Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202. https://doi.org/10.1115/1.2930412.
- Srinivasan, A.V. and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", J. Eng. Industry, 93(4), 1229-1232. https://doi.org/10.1115/1.3428067.
- Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites: Part 2 Thermo mechanical behavior", Int. Mater, 42(3), 85-116. https://doi.org/10.1179/imr.1997.42.3.85.
- Swaddiwudhipong. S., Tian, J. and Wang, C.M. (1995), "Vibration of cylindrical shells with ring supports", J Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503.
- Wang, S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55(6), 1340-1342. https://doi.org/10.1121/1.1914708.
- Zhang, L., Xiang, Y. and Wei, G.W. (2006), "Local adaptive differential quadrature for free vibration analysis of cylindrical shells with various boundary conditions" Int. J. Mech. Sci., 48(10), 1126-1138. https://doi.org/10.1016/j.ijmecsci.2006.05.005.
- Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Coupled vibration of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62(3), 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1.
- Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15(4), 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.