DOI QR코드

DOI QR Code

Strengthening effect of Ti3C2Tx in copper matrix composites prepared by molecular-level and high-shear mixings and SPS

  • Liu, Lu (Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University) ;
  • Ying, Guobing (Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University) ;
  • Wen, Dong (Key Laboratory of Superlight Materials & Surface Technology (Harbin Engineering University), Ministry of Education) ;
  • Hu, Cong (Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University) ;
  • Zhang, Chen (Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University) ;
  • Wang, Cheng (Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University)
  • Received : 2020.08.15
  • Accepted : 2021.06.12
  • Published : 2021.09.25

Abstract

MXene (Ti3C2Tx) reinforced copper matrix composites with weight fractions of MXene from 1 to 4 wt.% were fabricated based on molecular-level and high-shear mixings and spark plasma sintering (SPS) method. The mechanical properties of the composites with different weight fractions of MXene were studied, and X-ray photoelectron spectroscopy (XPS) was used to track the state of MXene in the composite preparation process. Chemical state and interface transitions would result in an interesting ductile-brittle transition phenomenon of the composite. The Vickers hardness and compressive strength of the composites prepared by the molecular-level mixing and high-shear mixing methods have been improved (the maxima are 44.9% and 41.8%, respectively), where the addition of 1wt.% MXene results in a tensile strength increase of 29.9%. The results show that molecular-level mixing and high-shear mixing methods are hopeful to be applied to produce many kinds of MXene composites.

Keywords

Acknowledgement

The authors greatly acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 11872171) and Fundamental Research Funds for the Central Universities (Grant No. B200202117).

References

  1. Aguirre, M.E., Zhou, R., Eugene, A.J., Guzman, M.I. and Grela, M.A. (2017), "Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion", Appl. Catal. B Environ., 217, 485-493. https://doi.org/10.1016/j.apcatb.2017.05.058
  2. Atiemo-Obeng, V.A. and Calabrese, R.V. (2004), Rotor-Stator Mixing Devices in Handbook of Industrial Mixing: Science and Practice, 479-505, John Wiley & Sons, Inc., New Jersey, U.S.A.
  3. Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutierrez, H.R., Heinz, T.F., Hong, S.S., Huang, J. and Ismach, A.F. (2013), "Progress, challenges, and opportunities in twodimensional materials beyond graphene.", ACS Nano, 7(4), 2898-2926. https://doi.org/10.1021/nn400280c.
  4. Cao, M., Wang, F., Lei, W., Wu, W., Lv, W. and Zhu, J. (2017), "Room temperature oxidation of Ti3C2 MXene for supercapacitor electrodes", J. Electrochem. Soc., 164(14), A3933-A3942. https://doi.org/10.1149/2.1541714jes.
  5. Cao, Y., Deng, Q., Liu, Z., Shen, D., Wang, T., Huang, Q., Du, S., Jiang, N., Lin, C. and Yu, J. (2017), "Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene", RSC Adv., 7(33), 20494-20501. https://doi.org/10.1039/C7RA00184C
  6. Carey, M.S., Sokol, M., Palmese, G.R. and Barsoum, M.W. (2019), "Water transport and thermomechanical properties of Ti3C2Tz MXene epoxy nanocomposites", ACS Appl. Mater. Interfac., 11(42), 39143-39149. https://doi.org/10.1021/acsami.9b11448.
  7. Cha, S.I., Kim, K.T., Arshad, S.N., Mo, C.B. and Hong, S.H. (2005), "Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing", Adv. Mater., 17(11), 1377-1381. https://doi.org/10.1002/adma.200401933.
  8. Cui, Y., Wang, L., Li, B., Cao, G. and Fei, W. (2014), "Effect of ball milling on the defeat of few-layer graphene and properties of copper matrix composites", Acta Metallurgica Sinica, 27(5), 937-943. https://doi.org/10.1007/s40195-014-0156-x.
  9. Deysher, G., Shuck, C.E., Hantanasirisakul, K., Frey, N.C., Foucher, A.C., Maleski, K., Sarycheva, A., Shenoy, V.B., Stach, E.A. and Anasori, B. (2019), "Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals", ACS Nano, 14(1), 204-217. https://doi.org/10.1021/acsnano.9b07708.
  10. Eom, W., Shin, H., Ambade, R.B., Lee, S.H., Lee, K.H., Kang, D.J. and Han, T.H. (2020), "Large-scale wet-spinning of highly electroconductive MXene fibers", Nature Commun., 11(1), 2825. https://doi.org/10.1038/s41467-020-16671-1.
  11. Eltaher, M.A., Wagih, A., Melaibari, A., Fathy, A. and Lubineau, G. (2020), "Effect of Al2O3 particles on mechanical and tribological properties of Al-Mg dual-matrix nanocomposites", Ceram. Int., 46(5), 5779-5787. https://doi.org/10.1016/j.ceramint.2019.11.028.
  12. Fehling, H. (1849), "The quantitative determination of sugar and starch by means of copper sulfate", Annalen der Chemie und Pharmacie, 72(1), 106-113. https://doi.org/10.1002/jlac.18490720112.
  13. Feng, W., Luo, H., Wang, Y., Zeng, S., Tan, Y., Deng, L., Zhou, X., Zhang, H. and Peng, S. (2019), "MXenes derived laminated and magnetic composites with excellent microwave absorbing performance", Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-40336-9.
  14. Halim, J., Lukatskaya, M.R., Cook, K.M., Lu, J., Smith, C.R., Naslund, L., May, S.J., Hultman, L., Gogotsi, Y. and Eklund, P. (2014), "Transparent conductive two-dimensional titanium carbide epitaxial thin films", Chem. Mater., 26(7), 2374-2381. https://doi.org/10.1021/cm500641a.
  15. Halim, J., Persson, I., Eklund, P., Persson, P.O. and Rosen, J. (2018), "Sodium hydroxide and vacuum annealing modifications of the surface terminations of a Ti3C2 (MXene) epitaxial thin film", RSC Adv., 8(64), 36785-36790. https://doi.org/10.1039/C8RA07270A.
  16. Hwang, J., Yoon, T., Jin, S.H., Lee, J., Kim, T.S., Hong, S.H. and Jeon, S. (2013), "Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process", Adv. Mater., 25(46), 6724-6729. https://doi.org/10.1002/adma.201302495.
  17. Kim, B., Taylor, L., Troy, A., McArthur, M. and Ptaszynska, M. (2018), "The effects of Graphene Oxide flakes on the mechanical properties of cement mortar", Adv. Nano Res., 21(3), 261-267. http://doi.org/10.12989/cac.2018.21.3.261.
  18. Kim, W.J., Lee, T.J. and Han, S. (2014), "Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties", Carbon, 69, 55-65. https://doi.org/10.1016/j.carbon.2013.11.058.
  19. Khamaj, A., Farouk, W. M., Shewakh, W. M., Abu-Oqail, A., Wagih, A. and Abu-Okail, M. (2021), "Effect of lattice structure evolution on the thermal and mechanical properties of Cu-Al2O3/GNPs nanocomposites", Ceram. Int., 47(12), 16511- 16520. https://doi.org/10.1016/j.ceramint.2021.02.219.
  20. Kobayashi, Y., Nakazawa, H., Maeda, T., Yasuda, Y. and Morita, T. (2017), "Synthesis of metallic copper nanoparticles and metal-metal bonding process using them", Adv. Nano Res., 5(4), 359-372. http://doi.org/10.12989/anr.2017.5.4.359.
  21. Li, M., Che, H., Liu, X., Liang, S. and Xie, H. (2014), "Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles", J. Mater. Sci., 49(10), 3725-3731. https://doi.org/10.1007/s10853-014-8082-x.
  22. Li, Y., Ding, L., Liang, Z., Xue, Y., Cui, H. and Tian, J. (2020), "Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2", Chem. Eng. J., 383 123178. https://doi.org/10.1016/j.cej.2019.123178.
  23. Lide, D.R. (2000), CRC Handbook of Chemistry and Physics, CRC Press, Florida, U.S.A.
  24. Liu, L., Ying, G., Hu, C., Zhang, K., Ma, F., Su, L., Zhang, C. and Wang, C. (2019), "Functionalization with MXene (Ti3C2) enhances the wettability and shear strength of carbon fiber-epoxy composites", ACS Appl. Nano Mater., 2(9), 5553-5562. https://doi.org/10.1021/acsanm.9b01127.
  25. Liu, L., Ying, G., Wen, D., Zhang, K., Hu, C., Zheng, Y., Zhang, C., Wang, X. and Wang, C. (2021), "Aqueous solution-processed MXene (Ti3C2Tx) for non-hydrophilic epoxy resin-based composites with enhanced mechanical and physical properties", Mater. Des., 197, 109276. https://doi.org/10.1016/j.matdes.2020.109276.
  26. Liu, M., Wang, H., Zeng, H. and Li, C. (2015), "Silver (I) as a widely applicable, homogeneous catalyst for aerobic oxidation of aldehydes toward carboxylic acids in water-"silver mirror": From stoichiometric to catalytic", Science Advances, 1(2), e1500020. https://doi.org/10.1126/sciadv.1500020.
  27. Low, S. and Shon Y. (2018), "Molecular interactions between preformed metal nanoparticles and graphene families", Adv. Nano Res., 6(4), 357-375. http://doi.org/10.12989/anr.2018.6.4.357.
  28. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y. and Barsoum, M.W. (2011), "Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2", Adv. Mater., 23(37), 4248-4253. https://doi.org/10.1002/adma.201102306.
  29. Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y. and Barsoum, M.W. (2012), "Two-dimensional transition metal carbides", ACS Nano, 6(2), 1322-1331. https://doi.org/10.1021/nn204153h.
  30. Naguib, M., Mashtalir, O., Lukatskaya, M.R., Dyatkin, B., Zhang, C., Presser, V., Gogotsi, Y. and Barsoum, M.W. (2014), "One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes", Chem. Commun., 50(56), 7420-7423. https://doi.org/10.1039/C4CC01646G.
  31. Sadoun, A.M., Fathy, A., Abu-Oqail, A., Elmetwaly, H.T. and Wagih, A. (2020), "Structural, mechanical and tribological properties of Cu-ZrO2/GNPs hybrid nanocomposites", Ceram. Int., 46(6), 7586-7594. https://doi.org/10.1016/j.ceramint.2019.11.258.
  32. Sadoun, A.M., Najjar, I. and Wagih, A. (2021), "Electrolessplating of Ag nanoparticles on Al2O3 and graphene Nano sheets (GNs) for improved wettability and properties of Al-Al2O3/GNs nanocomposites", Ceram. Int., 47(8), 10855-10865. https://doi.org/10.1016/j.ceramint.2020.12.203.
  33. Si, X., Chen, F., Deng, Q., Du, S., Huang, Q. (2018), "Preparation and property of MXene/copper alloy composites", J. Inorg. Mater., 33(6), 603-608. https://doi.org/10.15541/jim20170297.
  34. Shah, S.A., Habib, T., Gao, H., Gao, P., Sun, W., Green, M.J. and Radovic, M. (2016), "Template-free 3D titanium carbide (Ti3C2Tx) MXene particles crumpled by capillary forces", Chem Commun, 53(2), 400-403. https://doi.org/10.1039/C6CC07733A.
  35. Shen, C., Wang, L., Zhou, A., Wang, B., Wang, X., Lian, W., Hu, Q., Qin, G. and Liu, X. (2018), "Synthesis and electrochemical properties of two-dimensional RGO/Ti3C2Tx nanocomposites", Nanomaterials, 8(2), 80. https://doi.org/10.3390/nano8020080.
  36. Su, L., Ying, G., Liu, L., Ma, F. and Wang, C. (2018), "Ti3C2Tx on copper and nickel foams with improved electrochemical performance produced via solution processing for supercapacitor", Process. Appl. Ceram., 12(4), 366-373. https://doi.org/10.2298/PAC1804366S.
  37. Sun, Q., Peng, Y., Chen, H., Chang, K., Qiu, Y. and Lai, S. (2016), "Photoelectrochemical oxidation of ibuprofen via Cu2O-doped TiO2 nanotube arrays", J. Hazard. Mater., 319, 121-129. https://doi.org/10.1016/j.jhazmat.2016.02.078.
  38. Wagih, A. (2015), "Mechanical properties of Al-Mg/Al2O3 nanocomposite powder produced by mechanical alloying", Adv. Powder. Technol., 26(1), 253-258. https://doi.org/10.1016/j.apt.2014.10.005.
  39. Wagih, A. and Fathy, A. (2016), "Experimental investigation and FE simulation of nano-indentation on Al-Al2O3 nanocomposites", Adv. Powder. Technol., 27(2), 403-410. https://doi.org/10.1016/j.apt.2016.01.021.
  40. Wagih, A., Fathy, A., Ibrahim, D., Elkady, O. and Hassan, M. (2018), "Experimental investigation on strengthening mechanisms in Al-SiC nanocomposites and 3D FE simulation of Vickers indentation", J. Alloy. Compd., 752, 137-147. https://doi.org/10.1016/j.jallcom.2018.04.167.
  41. Wang, L., Chen, L., Song, P., Liang, C., Lu, Y., Qiu, H., Zhang, Y., Kong, J. and Gu, J. (2019), "Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application", Compos. Part B Eng., 171, 111-118. https://doi.org/10.1016/j.compositesb.2019.04.050.
  42. Wang, L., Cui, Y., Li, B., Yang, S., Li, R., Liu, Z., Vajtai, R. and Fei, W. (2015a), "High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing", RSC Adv., 5(63), 51193-51200. https://doi.org/10.1039/C5RA04782J.
  43. Wang, L., Cui, Y., Yang, S., Li, B., Liu, Y., Dong, P., Bellah, J., Fan, G., Vajtai, R. and Fei, W. (2015b), "Microstructure and properties of carbon nanosheet/copper composites processed by particle-assisted shear exfoliation", RSC Adv., 5(25), 19321-19328. https://doi.org/10.1039/C4RA14255A.
  44. Xu, Y., Liang, D., Liu, M. and Liu, D. (2008), "Preparation and characterization of Cu2O-TiO2: Efficient photocatalytic degradation of methylene blue", Mater. Res. BULL., 43(12), 3474-3482. https://doi.org/10.1016/j.materresbull.2008.01.026.
  45. Ying, G., Dillon, A.D., Fafarman, A.T. and Barsoum, M.W. (2017), "Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films", Mater. Res. Lett., 5(6), 391-398. https://doi.org/10.1080/21663831.2017.1296043.
  46. Yu, X., Michael, N., Mochalin, V.N., Barsoum, M.W., Yury, G., Xiqian, Y., Kyung-Wan, N., Xiao-Qing, Y., Kolesnikov, A.I. and Kent, P.R.C. (2014), "Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides", J. Am. Chem. Soc., 136(17), 6385-6394. https://doi.org/10.1021/ja501520b.
  47. Zhang, D. and Zhan, Z. (2016a), "Experimental investigation of interfaces in graphene materials/copper composites from a new perspective", RSC Adv., 6(57), 52219-52226. https://doi.org/10.1039/C6RA07606H.
  48. Zhang, D. and Zhan, Z. (2016b), "Strengthening effect of graphene derivatives in copper matrix composites", J. Alloy. Compd., 654, 226-233. https://doi.org/10.1016/j.jallcom.2015.09.013.
  49. Zhang, H., Wang, L., Zhou, A., Shen, C., Dai, Y., Liu, F., Chen, J., Li, P. and Hu, Q. (2016), "Effects of 2-D transition metal carbide Ti2CTx on properties of epoxy composites", RSC Adv., 6(90), 87341-87352. https://doi.org/10.1039/C6RA14560D.
  50. Zhang, K., Ying, G., Liu, L., Wu, D., Wang, X. and Zhou, Y. (2019), "Three-dimensional porous Ti3C2Tx-NiO composite electrodes with enhanced electrochemical performance for supercapacitors", Materials, 12(1), 188. https://doi.org/10.3390/ma12010188.
  51. Zhao, C. and Wang, J. (2014), "Fabrication and tensile properties of graphene/copper composites prepared by electroless plating for structrual applications", Physica Status Solidi (a), 211(12), 2878-2885. https://doi.org/10.1002/pssa.201431478.
  52. Zhao, H., Lv, J., Sang, J., Zhu, L., Zheng, P., Andrew, G. and Tan, L. (2018), "A facile method to construct MXene/CuO nanocomposite with enhanced catalytic activity of CuO on thermal decomposition of Ammonium Perchlorate", Materials, 11(12), 2457. https://doi.org/10.3390/ma11122457.