Acknowledgement
The authors are grateful to the Iran University of Science and Technology and the University of Salahaddin-Erbil for supporting this work.
References
- Abdullah, S.S., Hosseini-Hashemi, S., Hussein, N.A. and Nazemnezhad, R. (2020a), "Effect of temperature on vibration of cracked single-walled carbon nanotubes embedded in an elastic medium under different boundary conditions", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1759431.
- Abdullah, S.S., Hosseini-Hashemi, S., Hussein, N.A. and Nazemnezhad, R. (2020b), "Thermal stress and magnetic effects on nonlinear vibration of nanobeams embedded in nonlinear elastic medium", J. Therm. Stress., 43(10), 1316-1332. https://doi.org/10.1080/01495739.2020.1780175.
- Abdullah, S.S., Hosseini-Hashemi, S., Hussein, N.A. and Nazemnezhad, R. (2020c), "Temperature change effect on torsional vibration of nanorods embedded in an elastic medium using Rayleigh-Ritz method", J. Brazil. Soc. Mech. Sci. Eng., 42(11), 1-20. https://doi.org/10.1007/s40430-020-02664-0.
- Akbas, S.D. (2017), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
- Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
- Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
- Apuzzo, A., Barretta, R., Luciano, R., de Sciarra, F.M. and Penna, R. (2017), "Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model", Compos. Part B Eng., 123, 105-111. https://doi.org/10.1016/j.compositesb.2017.03.057.
- Azrar, A., Azrar, L. and Aljinaidi, A.A. (2016), "Analytical and numerical modeling of higher order free vibration characteristics of single-walled carbon nanotubes", Mech. Adv. Mater. Struct., 23(11), 1245-1262. https://doi.org/10.1080/15376494.2015.1068405.
- Barretta, R., Faghidian, S.A. and Luciano, R. (2019), "Longitudinal vibrations of nano-rods by stress-driven integral elasticity", Mech. Adv. Mater. Struct., 26(15), 1307-1315. https://doi.org/10.1080/15376494.2018.1432806.
- Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
- Berrabah, H., Tounsi, A., Semmah, A. and Adda Bedia, E. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351.
- Demir, C. and Civalek, O. (2017), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091.
- Dona, M., Palmeri, A. and Lombardo, M. (2015), "Dynamic analysis of multi-cracked Euler-Bernoulli beams with gradient elasticity", Comput. Struct., 161, 64-76. https://doi.org/10.1016/j.compstruc.2015.08.013.
- Duc, N.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. A Solids, 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004.
- Ebrahimi, F. and Mahmoodi, F. (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., 6(1), 57-80. https://doi.org/10.12989/anr.2018.6.1.057.
- Ebrahimi, F., Daman, M. and Mahesh, V. (2019), "Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory", Adv. Nano Res., 7(4), 249-263. https://doi.org/10.12989/anr.2019.7.4.249.
- Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Fazelzadeh, S. and Pouresmaeeli, S. (2013), "Thermo-mechanical vibration of double-orthotropic nanoplates surrounded by elastic medium", J. Therm. Stress., 36(3), 225-238. https://doi.org/10.1080/01495739.2013.765170.
- Hosseini-Hashemi, S., Nazemnezhad, R. and Rokni, H. (2015), "Nonlocal nonlinear free vibration of nanobeams with surface effects", Eur. J. Mech. A Solid, 52, 44-53. https://doi.org/10.1016/j.euromechsol.2014.12.012.
- Hussein, N.A., Rasul, H.A. and Abdullah, S.S. (2020), "The free vibration analysis of multi-cracked nanobeam using nonlocal elasticity theory", Zanco J. Pure Appl. Sci., 32(2), 39-54. https://doi.org/10.21271/ZJPAS.32.2.5.
- Khorshidi, M.A. and Shariati, M. (2016), "Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory", , J. Brazil. Soc. Mech. Sci. Eng., 38(8), 2607-2619. https://doi.org/10.1007/s40430-015-0388-3.
- Loya, J., Aranda-Ruiz, J.A. and Fernandez-Saez, J. (2014), "Torsion of cracked nanorods using a nonlocal elasticity model", J. Phys. D Appl. Phys., 47(11), 115304. https://doi.org/10.1088/0022-3727/47/11/115304.
- Loya, J., Lopez-Puente, J., Zaera, R. and Fernandez-Saez, J. (2009), "Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model", J. Appl. Phys., 105(4), 044309. https://doi.org/10.1063/1.3068370.
- Lu, J.P. (1997), "Elastic properties of single and multilayered nanotubes", J. Phys. Chem. Solid, 58(11), 1649-1652. https://doi.org/10.1016/S0022-3697(97)00045-0.
- Ma'en, S.S. (2017), "Superharmonic resonance analysis of nonlocal nano beam subjected to axial thermal and magnetic forces and resting on a nonlinear elastic foundation", Microsyst. Technol., 23(8), 3319-3330. https://doi.org/10.1007/s00542-016-3161-3.
- Mehta, V. and Kumar, S. (1994), "Temperature dependent torsional properties of high performance fibres and their relevance to compressive strength", J. Mater. Sci., 29(14), 3658-3664. https://doi.org/10.1007/BF00357332.
- Nazemnezhad, R. and Fahimi, P. (2017), "Free torsional vibration of cracked nanobeams incorporating surface energy effects", Appl. Math. Mech., 38(2), 217-230. https://doi.org/10.1007/s10483-017-2167-9.
- Nazemnezhad, R., Mahoori, R. and Samadzadeh, A. (2019), "Surface energy effect on nonlinear free axial vibration and internal resonances of nanoscale rods", Eur. J. Mech. A Solids, 77, 103784. https://doi.org/10.1016/j.euromechsol.2019.05.001.
- Numanoglu, H.M. and Civalek, O. (2019), "On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM", Int. J. Mech. Sci., 161, 105076. https://doi.org/10.1016/j.ijmecsci.2019.105076.
- Polizzotto, C. (2014), "Stress gradient versus strain gradient constitutive models within elasticity", Int. J. Solid Struct., 51(9), 1809-1818. https://doi.org/10.1016/j.ijsolstr.2014.01.021.
- Polizzotto, C. (2015), "A unifying variational framework for stress gradient and strain gradient elasticity theories", Eur. J. Mech. A Solids, 49, 430-440. https://doi.org/10.1016/j.euromechsol.2014.08.013.
- Polizzotto, C. (2016), "Variational formulations and extra boundary conditions within stress gradient elasticity theory with extensions to beam and plate models", Int. J. Solid Struct., 80, 405-419. https://doi.org/10.1016/j.ijsolstr.2015.09.015.
- Praveen, G. and Reddy, J. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solid Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9.
- Rahmani, O., Hosseini, S., Noroozi Moghaddam, M. and Fakhari Golpayegani, I. (2015), "Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: an analytical study", Int. J. Appl. Mech., 7(3), 1550036. https://doi.org/10.1142/S1758825115500362.
- Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
- Reddy, J. and Pang, S. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.
- Setoodeh, A., Rezaei, M. and Shahri, M.Z. (2016), "Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory", Appl. Math. Mech., 37(6), 725-740. https://doi.org/10.1007/s10483-016-2085-6.
- Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2020), "Torsional vibrations investigation of nonlinear nonlocal behaviour in terms of functionally graded nanotubes", Int. J. Non Linear Mech., 103513. https://doi.org/10.1016/j.ijnonlinmec.2020.103513.
- Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013.
- Wang, Q. and Wang, C. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes", Nanotechnology, 18(7), 075702. https://doi.org/10.1088/0957-4484/18/7/075702.
- Yao, X. and Han, Q. (2006), "Buckling analysis of multiwalled carbon nanotubes under torsional load coupling with temperature change", J. Eng. Mater. Technol., 128(3), 419-427. https://doi.org/10.1115/1.2203102.
- Yayli, M.O., Kandemir, S.Y. and Cercevik, A.E. (2019), "Torsional vibration of cracked carbon nanotubes with torsional restraints using Eringen's nonlocal differential model", J. Low Freq. Noise V. A., 38(1), 70-87. https://doi.org/10.1177/1461348418813255.
- Zur, K.K., Arefi, M., Kim, J. and Reddy, J. (2020), "Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory", Compos. Part B Eng., 182, 107601. https://doi.org/10.1016/j.compositesb.2019.107601.