DOI QR코드

DOI QR Code

Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model

  • Ghandourah, Emad E. (Nuclear Engineering Dept., Faculty of Engineering, King Abdulaziz University) ;
  • Ahmed, Hitham M. (Mining Engineering Dept., Faculty of Engineering, King Abdulaziz University) ;
  • Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Attia, Mohamed A. (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University) ;
  • Abdraboh, Azza M. (Physics Department, Faculty of Science, Banha University)
  • 투고 : 2021.06.12
  • 심사 : 2021.08.15
  • 발행 : 2021.10.25

초록

This paper explores the size-dependent vibration response of porous functionally graded (FG) micro/nanobeams based on an integrated nonlocal-couple stress continuum model (NLCS). The mutual effect of the microstructure local rotation and nonlocality are modelled using the modified couple stress theory and Eringen nonlocal elasticity theory, respectively, into the classical Euler-Bernoulli beam model. All the material properties of the bulk continuum including the microstructure material length scale parameter (MLSP) are assumed to be graded along the thickness according to a power law. For the first time, the effect of the porosity and voids on the modulus of elasticity and MLSP is taken as a ratio of the mass density with porosity-to-that without porosity. Accounting for the physical neutral axis concept and generalized elasticity theory, Hamilton's principle is utilized to formulate the equations of motion and boundary conditions for the FG porous micro/nanobeams. The analytical solution using Navier method is applied to solve the governing equations and obtain the results. The impact of different parameters such as the gradation index, porosity pattern, porosity parameter, nonlocal parameter, and MLSP on the free vibration characteristics of simply supported FG nanobeams are presented discussed in detail. The current model is efficient in many applications used porous FGM, such as aerospace, nuclear, power plane sheller, and marine structures.

키워드

과제정보

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant no. G-57-135-1441. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

참고문헌

  1. Abdelrahman, A.A. and Eltaher, M.A. (2020), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01211-8.
  2. Abdelrahman, A.A., Esen, I., O zarpa, C. and Eltaher, M.A. (2021), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Model., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008.
  3. Abo-Bakr, R.M., Eltaher, M.A. and Attia, M.A. (2020a), "Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01146-0.
  4. Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020b), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Based Des. Struct., 1-22. https://doi.org/10.1080/15397734.2020.1838298.
  5. Abo-Bakr, R.M., Abo-Bakr, H.M., Mohamed, SA. and Eltaher, M.A. (2021a), "Optimal weight for buckling of FG beam under variable axial load using Pareto optimality", Compos. Struct., 258, 113193. https://doi.org/10.1016/j.compstruct.2020.113193.
  6. Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2021b), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370.
  7. Akbari, H., Azadi, M. and Fahham, H. (2020), "Free vibration analysis of thick sandwich cylindrical panels with saturated FGporous core", Mech. Based Des. Struct., 1-19. https://doi.org/10.1080/15397734.2020.1748051.
  8. Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2020a), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01070-3.
  9. Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2020b), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J Vib. Control, 1077546320947302. https://doi.org/10.1177/1077546320947302.
  10. Alazwari, M.A., Abdelrahman, A.A., Wagih, A., Eltaher, M.A. and Abd-El-Mottaleb, H.E. (2021), Static analysis of cutout microstructures incorporating the microstructure and surface effects. Steel Compos. Struct., 38(5), 583-597. https://doi.org/10.12989/scs.2021.38.5.583.
  11. Alipour, M.M. and Shariyat, M. (2019), "Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores", Arch. Civil Mech. Eng., 19(4), 1211-1234. https://doi.org/10.1016/j.acme.2019.06.008.
  12. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021a), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
  13. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021b), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 679-689. https://doi.org/10.12989/sss.2021.27.4.679.
  14. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  15. Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.
  16. Aria, A.I., Rabczuk, T. and Friswell, M.I. (2019), "A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams", Eur. J. Mech. A. Solids, 77, 103767. https://doi.org/10.1016/j.euromechsol.2019.04.002.
  17. Asemi, K., Babaei, M. and Kiarasi, F. (2020), "Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1822865.
  18. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011
  19. Attia, M.A. and Rahman, A.A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.
  20. Attia, M.A. and Mohamed, S.A. (2020), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01080-1.
  21. Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393. https://doi.org/10.12989/anr.2017.5.4.393.
  22. Bashiri, A.H., Akbas, S.D., Abdelrahman, A.A., Assie, A., Eltaher, M.A. and Mohamed, E.F. (2021), "Vibration of multilayered functionally graded deep beams under thermal load", Geomech. Eng., 24(6), 545-557. https://doi.org/10.12989/gae.2021.24.6.545.
  23. Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
  24. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021a), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
  25. Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021b), "Buckling Analysis of CNTRC Curved Sandwich Nanobeams in Thermal Environment", Appl. Sci., 11(7), 3250. https://doi.org/10.3390/app11073250.
  26. Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
  27. Dong, Y.H., He, L.W., Wang, L., Li, Y.H. and Yang, J. (2018), "Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: an analytical study", Aerosp. Sci. Technol., 82, 466-478. https://doi.org/10.1016/j.ast.2018.09.037.
  28. Ebrahimi, F. and Salari, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. http://doi.org/10.1016/j.compstruct.2015.03.023.
  29. Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y.
  30. Ebrahimi, F. and Dabbagh, A. (2019), "A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams", Adv. Nano Res., 7(6), 379-390. https://doi.org/10.12989/anr.2019.7.6.379.
  31. Ebrahimi, F., Daman, M. and Mahesh, V. (2019), "Thermomechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory", Adv. Nano Res., 7(4), 249-263. https://doi.org/10.12989/anr.2019.7.4.249.
  32. Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1), 83-94. https://doi.org/10.12989/anr.2020.8.1.083.
  33. Ebrahimi, F., Seyfi, A., Nouraei, M. and Haghi, P. (2021), "Influence of magnetic field on the wave propagation response of functionally graded (FG) beam lying on elastic foundation in thermal environment", Wave. Random Complex, 1-19. https://doi.org/10.1080/17455030.2020.1847359.
  34. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
  35. Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(3), 1-10. https://doi.org/10.1007/s40430-018-1065-0.
  36. Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109.
  37. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  38. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  39. Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021a), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2021.1904255.
  40. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021b), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5.
  41. Esen, I., O zarpa, C. and Eltaher, M.A. (2021c), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
  42. Esmaeili, M. and Beni, Y.T. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. https://doi.org/10.22055/JACM.2019.27857.1439.
  43. Esmaeilzadeh, M., Golmakani, M.E. and Sadeghian, M. (2020), "A nonlocal strain gradient model for nonlinear dynamic behavior of bi-directional functionally graded porous nanoplates on elastic foundations", Mech. Based Des. Struct., 1-20. https://doi.org/10.1080/15397734.2020.1845965.
  44. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  45. Fan, F., Cai, X., Sahmani, S. and Safaei, B. (2021), "Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity", Compos. Struct., 262, 113604. https://doi.org/10.1016/j.compstruct.2021.113604.
  46. Farajpour, A., Rastgoo, A. and Mohammadi, M. (2014), "Surface effects on the mechanical characteristics of microtubule networks in living cells", Mech. Res. Commun., 57, 18-26. http://doi.org/10.1016/j.mechrescom.2014.01.005.
  47. Farzam, A. and Hassani, B. (2019), "Isogeometric analysis of inplane functionally graded porous microplates using modified couple stress theory", Aerosp. Sci. Technol., 91, 508-524. https://doi.org/10.1016/j.ast.2019.05.012.
  48. Fattahi, A.M., Sahmani, S. and Ahmed, N.A. (2020), "Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations", Mech. Based Des. Struct., 48(4), 403-432. https://doi.org/10.1080/15397734.2019.1624176.
  49. Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283.
  50. Fouda, N., El-Midany, T. and Sadoun, A.M. (2017), "Bending, buckling and vibration of a functionally graded porous beam using finite elements", J. Appl. Comput. Mech., 3(4), 274-282. https://doi.org/10.22055/JACM.2017.21924.1121.
  51. Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293.
  52. Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281.
  53. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019a), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  54. Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
  55. Hamidi, B.A., Hosseini, S.A., Hayati, H. and Hassannejad, R. (2020), "Forced axial vibration of micro and nanobeam under axial harmonic moving and constant distributed forces via nonlocal strain gradient theory", Mech. Based Des. Struct., 1-15. https://doi.org/10.1080/15397734.2020.1744003.
  56. Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  57. Jena, S.K., Chakraverty, S., Malikan, M. and Tornabene, F. (2019), "Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory", Mech. Based Des. Struct., 1-15. https://doi.org/10.1080/15397734.2019.1698437.
  58. Karamanli, A. and Aydogdu, M. (2020), "Structural dynamics and stability analysis of 2D-FG microbeams with two-directional porosity distribution and variable material length scale parameter", Mech. Based Des. Struct., 48(2), 164-191. https://doi.org/10.1080/15397734.2019.1627219.
  59. Kim, J., Zur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023.
  60. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. http://doi.org/10.1016/j.matdes.2016.12.061.
  61. Koochi, A. and Goharimanesh, M. (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Rep. Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g.
  62. Le, N.L., Nguyen, T.P., Vu, H.N., Nguyen, T.T. and Vu, M.D. (2020), "An analytical approach of nonlinear thermomechanical buckling of functionally graded graphene-reinforced composite laminated cylindrical shells under compressive axial load surrounded by elastic foundation", J. Appl. Comput. Mech., 6(2), 357-372. https://doi.org/10.22055/JACM.2019.29527.1609.
  63. Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. http://doi.org/10.1016/j.ijengsci.2016.07.011.
  64. Lu, L., She, G.L. and Guo, X. (2021a), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  65. Lu, L., Wang, S., Li, M. and Guo, X. (2021b), "Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets", Compos. Struct., 272, 114231. https://doi.org/10.1016/j.compstruct.2021.114231.
  66. Lyashenko, I.A., Borysiuk, V.N. and Popov, V.L. (2020), "Dynamical model of the asymmetric actuator of directional motion based on power-law graded materials", Mech. Eng., 245-254. https://doi.org/10.22190/FUME200129020L.
  67. Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007.
  68. Mindlin, R.D, (1963), "Influence of couple-stresses on stress concentrations", Experimental Mechanics, 3, 1-7. https://doi.org/10.1007/BF02327219
  69. Mohammadimehr, M. and Meskini, M. (2020), "Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings", Adv. Nano Res., 8(1), 69-82. https://doi.org/10.12989/anr.2020.8.1.069.
  70. Moory-Shirbani, M., Sedighi, H.M., Ouakad, H.M. and Najar, F. (2018), "Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential", Compos. Struct., 184, 950-960. https://doi.org/10.1016/j.compstruct.2017.10.062.
  71. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  72. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
  73. Sahmani, S. and Madyira, D.M. (2019), "Nonlocal strain gradient nonlinear primary resonance of micro/nano-beams made of GPL reinforced FG porous nanocomposite materials", Mech. Based Des. Struct., 1-28. https://doi.org/10.1080/15397734.2019.1695627
  74. Sedighi, H.M. and Daneshmand, F. (2014), "Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Technol., 28(9), 3459-3469. https://doi.org/10.1007/s12206-014-0807-x.
  75. Sedighi, H.M., Abouelregal, A.E. and Faghidian, S.A. (2021), "Modified couple stress flexure mechanics of nanobeams", Physica Scripta, 96(11), 115402. https://doi.org/10.1088/1402-4896/ac13e2.
  76. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  77. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
  78. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  79. Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013.
  80. Soliman, A.E., Eltaher, M.A., Attia, M.A. and Alshorbagy, A.E. (2018), "Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility", Struct. Eng. Mech., 66(1), 85-96. http://dx.doi.org/10.12989/sem.2018.66.1.085.
  81. Su, J., Qu, Y., Zhang, K., Zhang, Q. and Tian, Y. (2021), "Vibration analysis of functionally graded porous piezoelectric deep curved beams resting on discrete elastic supports", Thin Wall. Struct., 164, 107838. https://doi.org/10.1016/j.tws.2021.107838.
  82. Tapia, G., Elwany, A.H. and Sang, H. (2016), "Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models", Addit. Manuf., 12, 282-290. https://doi.org/10.1016/j.addma.2016.05.009.
  83. Xu, X., Karami, B. and Shahsavari, D. (2021), "Time-dependent behavior of porous curved nanobeam", Int. J. Eng. Sci., 160, 103455. https://doi.org/10.1016/j.ijengsci.2021.103455.
  84. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  85. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  86. Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. http://doi.org/10.12989/scs.2021.38.3.293.
  87. Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1-3), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.
  88. Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. http://doi.org/10.12989/cac.2020.26.1.063.