DOI QR코드

DOI QR Code

Computer simulation of the nonlinear static behavior of axially functionally graded microtube with porosity

  • Li, Xiaohuan (School of Mechanical Engineering, Tianjin University) ;
  • Wang, Tian (School of Mechanical Engineering, Tianjin University) ;
  • Liu, Fang (School of Mechanical Engineering, Tianjin University) ;
  • Zhu, Zhiwen (School of Mechanical Engineering, Tianjin University)
  • 투고 : 2021.04.22
  • 심사 : 2021.08.27
  • 발행 : 2021.10.25

초록

Static analysis of microstructures, including bending and buckling, is widely practiced in the fabrication and creation of applications such as actuation, sensing, and energy recovery. This article aims to inquire about the static behavior of non-uniform and imperfect microtubes through a numerical solution. Based on the modified couple stress theory, the first-order shear deformation theory and Von-Karman nonlinear theory, and employing the energy conservation method, the linear and nonlinear governing equations are derived. The porosity-dependent material in both ceramic and metal phases makes the functionally graded materials which are varied along tube length, moreover, cross-sections are also considered uniform and nonuniform via three valuable functions. Finally, the linear and nonlinear equations are solved utilizing the generalized differential quadrature method (GDQM) coupled with the numerical iteration method.

키워드

과제정보

This work was supported by Natural Science Foundation of China (NSFC) through Grant Nos.11872266, 51875396 and 12021002

참고문헌

  1. Addou F.Y., Meradjah, M., Bousahla Abdelmoumen, A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. http://doi.org/10.12989/CAC.2019.24.4.347.
  2. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. http://doi.org/10.12989/anr.2018.6.1.039.
  3. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-243. http://doi.org/10.12989/anr.2018.6.3.219.
  4. Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D.w. and Tounsi, A. (2020), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 1-17. http://doi.org/10.1007/s00366-020-01200-x).
  5. Al-Furjan, M.S.H., Hatami, A., Habibi, M., Shan, L. and Tounsi, A. (2021), "On the vibrations of the imperfect sandwich higherorder disk with a lactic core using generalize differential quadrature method", Compos, Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
  6. Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141.
  7. Arefi, M. and Zenkour, A.M. (2018), "Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory", Steel Compos. Struct., 26(4), 421-437. https://doi.org/10.12989/scs.2018.26.4.421.
  8. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 1-22. http://doi.org/10.1007/s00366-021-01382-y.
  9. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res.. 6(3), 257-278. http://doi.org/10.12989/anr.2018.6.3.257.
  10. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. http://doi.org/10.1080/15376494.2017.1285455).
  11. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete. 26(5), 439-450. http://doi.org/10.12989/CAC.2020.26.5.439.
  12. Bellifa, H., Selim, M.M., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Al-Zahrani, M.M. and Tounsi, A. (2021), "Influence of porosity on thermal buckling behavior of functionally graded beams", Smart Struct. Syst., 27(4), 719-728. https://doi.org/10.12989/sss.2021.27.4.719.
  13. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res.. 6(3), 279. http://doi.org/10.12989/anr.2018.6.3.279.
  14. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. http://doi.org/10.12989/anr.2018.6.4.339.
  15. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. http://doi.org/10.12989/ANR.2019.7.5.351.
  16. Bouhadra, A., Menasria, A. and Rachedi, M.A. (2021), "Boundary conditions effect for buckling analysis of porous functionally graded nanobeam", Adv. Nano Res., 10(4), 313-325. https://doi.org/10.12989/anr.2021.10.4.313.
  17. Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., 3(4), 193-206. http://doi.org/10.12989/anr.2015.3.4.193).
  18. Chen, R., Cheng, Y., Wang, P., Wang, Y., Wang, Q., Yang, Z., Tang, C., Xiang, S., Luo, S., Huang, S. and Su, C. (2021), "Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH2)2 complexing solutions", Chem. Eng. J., 421, 129682. https://doi.org/10.1016/j.cej.2021.129682.
  19. Cheng, H., Li, T., Li, X., Feng, J., Tang, T. and Qin, D. (2021), "Facile synthesis of Co9S8 nanocages as an electrochemical sensor for luteolin detection", J. Electrochem. Soc., 168(8), 087504. http://doi.org/10.1149/1945-7111/ac1813.
  20. Deng, H., Chen, Y., Jia, Y., Pang, Y., Zhang, T., Wang, S. and Yin, L. (2021), "Microstructure and mechanical properties of dissimilar NiTi/Ti6Al4V joints via back-heating assisted friction stir welding", J. Manuf. Proc., 64, 379-391. https://doi.org/10.1016/j.jmapro.2021.01.024.
  21. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. http://doi.org/10.1080/15376494.2016.1227499.
  22. Ebrahimi, F., Hashemabadi, D., Habibi, M. and Safarpour, H. (2020), "Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell", Microsyst. Technol., 26(2), 461-473. http://doi.org/10.1007/s00542-019-04542-9.
  23. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141-169. http://doi.org/10.12989/anr.2017.5.2.141.
  24. Feng, S., Zuo, C., Zhang, L., Yin, W. and Chen, Q. (2021), "Generalized framework for non-sinusoidal fringe analysis using deep learning", Photon. Res., 9(6), 1084-1098. http://doi.org/10.1364/PRJ.420944.
  25. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
  26. Ghabussi, A., Habibi, M., NoormohammadiArani, O., Shavalipour, A., Moayedi, H. and Safarpour, H. (2020), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control., 27(1-2), 101-118. http://doi.org/10.1177/1077546320923930.
  27. Ghabussi, A., Ashrafi, N., Shavalipour, A., Hosseinpour, A., Habibi, M., Moayedi, H., Babaei, B. and Safarpour, H. (2021), "Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter", Mech. Based Des. Struct., 49(5), 738-762. http://doi.org/10.1080/15397734.2019.1705166.
  28. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. http://doi.org/10.1007/s00542-015-2662-9.
  29. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control., 23(19), 3247-3265. http://doi.org/10.1177/1077546315627723.
  30. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. http://doi.org/10.1080/15376494.2015.1091527.
  31. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016b), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A., 122(9), 837. http://doi.org/10.1007/s00339-016-0364-5.
  32. Ghadiri, M., Shafiei, N. and Alavi, H. (2017a), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. http://doi.org/10.1080/15376494.2016.1196770.
  33. Ghadiri, M., Shafiei, N. and Babaei, R. (2017b), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. http://doi.org/10.12989/SCS.2017.25.2.197.
  34. Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., AlZahrani, M.M., Hussain, M. and Mahmoud, S. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001.
  35. Hamidi, A., Houari, M.S.A., Mahmoud, S. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235.
  36. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. http://doi.org/10.1007/s00366-021-01456-x.
  37. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021a), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 1-18. http://doi.org/10.1007/s00366-021-01395-7.
  38. Huang, Z.Q., Yi, S.H., Chen, H.X. and He, X.Q. (2019b), "Parameter analysis of damaged region for laminates with matrix defects", J. Sandw. Struct. Mater., 23(2), 580-620. http://doi.org/10.1177/1099636219842290.
  39. Jiao, J., Ghoreishi, S.M., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput., 1-15. http://doi.org/10.1007/s00366-021-01391-x.
  40. Kaddari, M., Kaci, A., Bousahla Abdelmoumen, A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. http://doi.org/10.12989/CAC.2020.25.1.037.
  41. Kim, J., Zur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023.
  42. Li, X., Shi, T., Li, B., Chen, X., Zhang, C., Guo, Z. and Zhang, Q. (2019), "Subtractive manufacturing of stable hierarchical micronano structures on AA5052 sheet with enhanced water repellence and durable corrosion resistance", Mater. Design, 183, 108152. https://doi.org/10.1016/j.matdes.2019.108152.
  43. Lori, E.S., Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer", Eur. Phys. J. Plus., 135(2), 144. http://doi.org/10.1140/epjp/s13360-020-00217-x.
  44. Lv, S. and Liu, Y. (2021), "PLVA: Privacy-preserving and lightweight V2I authentication protocol", IEEE T. Intell. Transp., 1-7. http://doi.org/10.1109/TITS.2021.3059638.
  45. Lv, Z., Chen, D. and Wang, Q. (2021a), "Diversified technologies in internet of vehicles under intelligent edge computing", IEEE T. Intell. Transp., 22(4), 2048-2059. http://doi.org/10.1109/TITS.2020.3019756.
  46. Lv, Z., Lou, R. and Singh, A.K. (2021b), "AI empowered communication systems for intelligent transportation systems", IEEE T. Intell. Transp., 22(7), 4579-4587. http://doi.org/10.1109/TITS.2020.3017183.
  47. Ma, W.L., Li, X.F. and Lee, K.Y. (2020), "Third-order shear deformation beam model for flexural waves and free vibration of pipes", J. Acoust. Soc. Am., 147(3), 1634-1647. http://doi.org/10.1121/10.0000855.
  48. Ma, L., Liu, X. and Moradi, Z. (2021), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. http://doi.org/10.1007/s00366-020-01210-9.
  49. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E., Tounsi, A., Mahmoud, S., Tounsi, A. and Benrahou, K. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  50. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  51. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017a), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stresses., 40(10), 1201-1214. http://doi.org/10.1080/01495739.2017.1332962.
  52. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017b), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A., 123(5), 315. http://doi.org/10.1007/s00339-017-0918-1.
  53. Moayedi, H., Habibi, M., Safarpour, H., Safarpour, M. and Foong, L.K. (2019), "Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk", Int. J. Appl. Mech., 11(10), 1950102. http://doi.org/10.1142/s1758825119501023.
  54. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Wave. Random Complex., 1-24. http://doi.org/10.1080/17455030.2021.1926572.
  55. Navi, B.R., Mohammadimehr, M. and Arani, A.G. (2019), "Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory", Steel Compos. Struct., 32(6), 753-767. https://doi.org/10.12989/scs.2019.32.6.753.
  56. Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., 8(1), 59-68. https://doi.org/10.12989/anr.2020.8.1.059.
  57. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids., 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
  58. Safarpour, M., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM", Thin Wall. Struct., 150, 106683. https://doi.org/10.1016/j.tws.2020.106683.
  59. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. http://doi.org/10.12989/anr.2019.7.2.089.
  60. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. http://doi.org/10.1007/s00339-016-0245-y.
  61. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  62. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  63. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. http://doi.org/10.1007/s00339-016-0245-y.
  64. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  65. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016f), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  66. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  67. Shafiei, N. and Kazemi, M. (2017), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  68. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017a), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  69. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017b), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Model., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  70. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. http://doi.org/10.1080/15376494.2017.1365982.
  71. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. http://doi.org/10.22034/jsm.2019.563759.1273.
  72. Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020a), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin Wall. Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
  73. Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020b), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  74. Sheng, H., Wang, S., Zhang, Y., Yu, D., Cheng, X., Lyu, W. and Xiong, Z. (2021), "Near-online tracking with co-occurrence constraints in blockchain-based edge computing", IEEE Internet Thing J., 8(4), 2193-2207. http://doi.org/10.1109/JIOT.2020.3035415.
  75. Shokrgozar, A., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell", Mech. Based Des. Struct., 1-28. http://doi.org/10.1080/15397734.2020.1719509.
  76. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021a), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  77. Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021b), "An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation", Wave. Random Complex, 1-24. http://doi.org/10.1080/17455030.2021.1942310.
  78. Wang, H., Zandi, Y., Gholizadeh, M. and Issakhov, A. (2021), "Buckling of porosity-dependent bi-directional FG nanotube using numerical method", Adv. Nano Res., 10(5), 493-507. https://doi.org/10.12989/anr.2021.10.5.493.
  79. Wu, Z., Song, A., Cao, J., Luo, J. and Zhang, L. (2020), "Efficiently translating complex SQL query to MapReduce jobflow on cloud", IEEE T. Cloud Comput., 8(2), 508-517. http://doi.org/10.1109/TCC.2017.2700842.
  80. Xie, J., Chen, Y., Yin, L., Zhang, T., Wang, S. and Wang, L. (2021), "Microstructure and mechanical properties of ultrasonic spot welding TiNi/Ti6Al4V dissimilar materials using pure Al coating", J. Manuf. Proc., 64, 473-480. https://doi.org/10.1016/j.jmapro.2021.02.009.
  81. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  82. Yang, J. and Shen, H.S. (2002), "Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments", J. Sound Vib., 255(3), 579-602. https://doi.org/10.1006/jsvi.2001.4161.
  83. Zhang, C., Jin, Q., Song, Y., Wang, J., Sun, L., Liu, H., Dun, L., Tai, H., Yuan, X., Xiao, H., Zhu, L. and Guo, S. (2021a), "Vibration analysis of a sandwich cylindrical shell in hygrothermal environment", Nanotechnol. Rev., 10(1), 414-430. https://doi.org/10.1515/ntrev-2021-0026.
  84. Zhang, T., Wu, X., Shaheen, S.M., Rinklebe, J., Bolan, N.S., Ali, E.F., Li, G. and Tsang, D.C.W. (2021b), "Effects of microorganism-mediated inoculants on humification processes and phosphorus dynamics during the aerobic composting of swine manure", J. Hazard. Mater., 416, 125738. https://doi.org/10.1016/j.jhazmat.2021.125738.
  85. Zhao, N., Deng, L., Luo, D. and Zhang, P. (2020), "One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor", Appl. Surf. Sci., 526, 146696. https://doi.org/10.1016/j.apsusc.2020.146696.
  86. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23. http://doi.org/10.1007/s00366-020-01242-1.
  87. Zine, A., Bousahla Abdelmoumen, A., Bourada, F., Benrahou Kouider, H., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. http://doi.org/10.12989/CAC.2020.26.1.063.