DOI QR코드

DOI QR Code

Superharmonic vibrations of sandwich beams with fibre composite core layer based on the multiple scale method

  • Ali, Abbache (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Youzera, Hadj (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Abualnour, Moussa (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Houari, Mohammed Sid Ahmed (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Meftah, Sid Ahmed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de DjellaliLiabes) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.03.31
  • Accepted : 2021.08.06
  • Published : 2021.10.25

Abstract

This paper deals with the secondary vibration problem in the superharmonic case near the harmonic excitation of $1/3_{{\omega}_l}$, arising from the vibration nonlinearity that characterizes the slender and less damping laminated beam with composite material core. For this aim the multiple scale method in conjunction with the higher order zigzag theories are used to obtain the resonance responses. In the present work the nonlinear forced vibration problem of sandwich beams under harmonic excitation is solved by the multiples scales method, based by the introduction of an artificial parameter with higher order expansions, to control the nonlinear analytical solutions. The application of this method demonstrates the sensitivity of the sandwich beams with viscoelastic composite layer to the secondary superharmonic vibrations. Following, parametric study is conducted to demonstrate the vulnerability of the laminated structures to the superharmonic vibrations and to reduce as far as possible the amplitude vibrations achieved by more appropriated structural design. The results reveal the effect of the slenderness of the sandwich beams on the hardening changes. In the other hand the results demonstrate the importance of fibre orientation angle to reduce as far as possible the amplitude responses of the sandwich structures in superharmonic vibration case.

Keywords

References

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. http://doi.org/10.12989/cac.2019.24.6.489.
  2. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
  3. Afaq, K.S., Karama, M. and Mistou, S. (2003), "Un nouveau modele raffine pour les structures multicouches", Comptes-Rendus Des, 13, 289-292.
  4. Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141.
  5. Belouettar, S., Azrar, L., Daya, E.M., Laptev, V. and Potier-Ferry, M. (2008), "Active control of nonlinear vibration of sandwich piezoelectric beams: A simplified approach", Comput. Struct., 86(3-5), 386-397. https://doi.org/10.1016/j.compstruc.2007.02.009.
  6. Bhimaraddi, A. (1995), "Sandwich beam theory and the analysis of constrained layer damping", J. Sound Vib., 179(4), 591-602. https://doi.org/10.1006/jsvi.1995.0039.
  7. Bilasse, M., Daya, E.M. and Azrar, L. (2010), "Linear and nonlinear vibrations analysis of viscoelastic sandwich beams", J. Sound Vib., 329(23), 4950-4969. https://doi.org/10.1016/j.jsv.2010.06.012.
  8. Cheraghbak, A., Dehkordi, M.B. and Golestanian, H. (2019), "Vibration analysis of sandwich beam with nanocompositefacesheets considering structural damping effects", Steel Compos. Struct., 32(6), 795-806. https://doi.org/10.12989/scs.2019.32.6.795.
  9. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2020), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
  10. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2021), "Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01413-8.
  11. Daya, E.M., Azrar, L. and Potier-Ferry, M. (2004), "An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams", J. Sound Vib., 271(3-5), 789-813. https://doi.org/10.1016/S0022-460X(03)00754-5.
  12. Demir, E. (2016), "A study on natural frequencies and damping ratios of composite beams with holes", Steel Compos. Struct., 21(6), 1211-1226. https://doi.org/10.12989/scs.2016.21.6.1211.
  13. Demir, E. (2017b), "Vibration and damping behaviors of symmetric layered functional graded sandwich beams", Struct. Eng. Mech., 62(6), 771-780. https://doi.org/10.12989/sem.2017.62.6.771.
  14. Emam, S.A. and Nayfeh, A.H. (2009), "Postbuckling and free vibrations of composite beams", Compos. Struct., 88(4), 636-642. https://doi.org/10.1016/j.compstruct.2008.06.006.
  15. Gibson, R.F. and Plunkett, R. (1977), "Dynamic stiffness and damping of fiber-reinforced composite materials", Shock Vib. Dig., 9-18.
  16. Gibson, R.F. and Wilson, D.G. (1979), "Dynamic mechanical properties of fiber-reinforced composite materials", Shock Vib. Dig., 11(10), 3. https://doi.org/10.1177/058310247901101001
  17. Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38(5), 533-545. https://doi.org/10.12989/scs.2021.38.5.533.
  18. Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  19. Hu, H., Belouettar, S. and Potier-Ferry, M. (2008), "Review and assessment of various theories for modeling sandwich composites", Compos. Struct., 84(3), 282-292. https://doi.org/10.1016/j.compstruct.2007.08.007.
  20. Hyer, M.W., Anderson, W.J. and Scott, R.A. (1976), "Non-linear vibrations of three-layer beams with viscoelastic cores I. Theory", J. Sound Vib., 46(1), 121-136. https://doi.org/10.1016/0022-460X(76)90822-1.
  21. Janghorban, M. and Nami, M.R. (2017), "Wave propagation in functionally graded nanocomposites reinforced with carbon nanotubes based on second-order shear deformation theory", Mech. Adv. Mater. Struct., 24(6), 458-468. https://doi.org/10.1080/15376494.2016.1142028.
  22. Kapuria, S., Dumir, P.C. and Jain, N.K. (2004), "Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams", Compos. Struct., 64(3-4), 317-327. https://doi.org/10.1016/j.compstruct.2003.08.013.
  23. Karami, B., Janghorban, M., Shahsavari, D., Dimitri, R. and Tornabene, F. (2019), "Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes", Molecules, 24(15), 2750. https://doi.org/10.3390/molecules24152750.
  24. Khanin, R., Cartmell, M. and Gilbert, A. (2000), "A computerised implementation of the multiple scales perturbation method using mathematica", Comput. Struct., 76(5), 565-575. https://doi.org/10.1016/S0045-7949(99)00184-4.
  25. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017b), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  26. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017a), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  27. Kovac Jr, E.J., Anderson, W.J. and Scott, R.A. (1971), "Forced non-linear vibrations of a damped sandwich beam", J. Sound Vib., 17(1), 25-39. https://doi.org/10.1016/0022-460X(71)90131-3.
  28. Merzouki, T., Ahmed, H.M.S., Bessaim, A., Haboussi, M., Dimitri, R. and Tornabene, F. (2021), "Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theory", Math. Mech. Solid., 10812865211011759. https://doi.org/10.1177/10812865211011759.
  29. Rao, D.K. (1978), "Frequency and loss factors of sandwich beams under various boundary conditions", J. Mech. Eng. Sci., 20(5), 271-282. https://doi.org/10.1243/JMES_JOUR_1978_020_047_02.
  30. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
  31. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., A69-A77.
  32. Rikards, R. (1993), "Finite element analysis of vibration and damping of laminated composites", Compos. Struct., 24(3), 193-204. https://doi.org/10.1016/0263-8223(93)90213-A.
  33. Sahoo, R. and Singh, B.N. (2014), "A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 117, 316-332. https://doi.org/10.1016/j.compstruct.2014.05.002.
  34. Sheybani, M., Janghorban, M., Heidari, F. andTaheri, K. (2021). "Dynamics of nanocomposite plates", J. Brazil. Soc. Mech. Sci. Eng., 43(7), 1-17. https://doi.org/10.1007/s40430-021-03059-5.
  35. Timoshenko, S.P. (1922). "On the transverse vibrations of bars of uniform cross-section", London, Edinburgh, Dublin Philos. Mag. J. Sci., 43(253), 125-131. https://doi.org/10.1080/14786442208633855
  36. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  37. Youzera, H. andMeftah, S.A. (2017), "Nonlinear damping and forced vibration behaviour of sandwich beams with transverse normal stress", Compos. Struct., 179, 258-268. https://doi.org/10.1016/j.compstruct.2017.07.038.
  38. Youzera, H., Meftah, S.A. and Daya, E.M. (2017), "Superharmonic resonance of cross-ply laminates by the method of multiple scales", J. Comput. Nonlin. Dyn., 12(5). 12(5), 054503. https://doi.org/10.1115/1.4036914.
  39. Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008.
  40. Zinoviev, P.A. and Ermakov, Y.N. (1994). Energy Dissipation In Composite Materials, CRC Press.