과제정보
본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(스마트 건설기술 개발사업 : 과제번호 20SMIP-A157351-02)
참고문헌
- Asadi, K., Chen, P., Han, K., Wu, T., Lobaton, E. (2019). Real-time Scene Segmentation Using a Light Deep Neural Network Architecture for Autonomous Robot Navigation on Construction Sites, The 2019 ASCE International Conference on Computing in Civil Engineering, arXiv:1901.08630 [cs.RO], https://arxiv.org/abs/1901.08630.
- Behringer, R., Klinker, G., Mizell, D. (1999). Augmented Reality: Placing Artificial Objects in Real Scenes, CRC Press.
- Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accu racy of Object Detection, Computer Vision and Pattern Recognition, arXiv:2004.10934 [cs.CV], https://arxiv.org/abs/2004.10934.
- Christine, B. (2019). Bentley's SYNCHRO XR and Microsoft HoloLens 2 bring the benefits of mixed reality to construction sites, https://www.bentley.com/ko/about-us/news/2019/february/24/synchro-xr-with-hololens-2-release (May. 21. 2021).
- Elsbach, K. D., Kramer, R. M. (2015). Handbook of Qualitative Organizational Research: Innovative Pathways and Methods, Routledge.
- Fang, Q., Li, H., Luo, X., Ding, L., Rose, T. M., An, W., Yu, Y. (2018). A deep learning-based method for detecting non-certified work on construction sites, Advanced Engineering Informatics, 35, pp. 56-68. https://doi.org/10.1016/j.aei.2018.01.001
- Fang, W., Ding, L., Zhong, B., Love, P. E.D., Luo, H. (2018). Automated detection of workers and heavy equipment on construction sites: A convolutional neural network approach, Advanced Engineering Informatics, 37, pp. 139-149. https://doi.org/10.1016/j.aei.2018.05.003
- Fang, Y., Ding, L., Luo, H., Love, P. E.D. (2018). Falls from heights: A computer vision-based approach for safety harness detection, Automation in Construction, 91, pp. 53-61. https://doi.org/10.1016/j.autcon.2018.02.018
- Girshick, R., Donahue, J., Darrell, T., Malik., J. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 580-587.
- Ippolito, B. (2018). simplejson - JSON encoder and decoder, https://simplejson.readthedocs.io/en/latest/ (May. 06. 2021).
- Jiang, Z., Zhao, L., Li, S., Jia, Y. (2020). Real-time object detection method based on improved YOLOv4-tiny, Computer Vision and Pattern Recognition, arXiv:2011.04244 [cs.CV], https://arxiv.org/abs/2011.04244.
- Jiao, Y., Zhang, S., Li, Y., Wang, Y., Yang, B. (2013). Towards cloud Augmented Reality for construction application by BIM and SNS integration, Automation in Construction, 33, pp. 37-47. https://doi.org/10.1016/j.autcon.2012.09.018
- Kim, H., Bang, S., Jeong, H., Ham, Y., Kim, H. (2018). Analyzing context and productivity of tunnel earthmoving processes using imaging and simulation, Automation in Construction, 92, pp. 188-198. https://doi.org/10.1016/j.autcon.2018.04.002
- Kim, J., Sung, J.-Y., Park, S. (2020). Comparison of Faster-RCNN, YOLO, and SSD for Real-Time Vehicle Type Recognition, 2020 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia), 2020, pp. 1-4.
- Lee, Y.-J., Kim, J.-Y., Pham, H., Park, M.-W. (2020). Augmented Reality Framework for Efficient Access to Schedule Information on Construction Sites, Journal of KIBIM, 10(4), pp. 60-69. https://doi.org/10.13161/KIBIM.2020.10.4.060
- Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., Dollar, P. (2014). Microsoft COCO: Common Objects in Context, ECCV 2014: Computer Vision - ECCV 2014, pp. 740-755.
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A. C. (2016). SSD: Single Shot MultiBox Detector, Computer Vision - ECCV 2016, pp. 21-37.
- Luo, H., Xiong, C., Fang, W., Love, P. E.D., Zhang, B., Ouyang, X. (2018). Convolutional neural networks: Computer vision-based workforce activity assessment in construction, Automation in Construction, 94, pp. 282-289. https://doi.org/10.1016/j.autcon.2018.06.007
- Microsoft. (2019). Introducing MRTK for Unity, https://docs.microsoft.com/ko-kr/windows/mixed-reality/develop/unity/mrtk-getting-started (May. 04. 2021).
- Redmon, J., Divvala, S., Girshick, S., Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788.
- Ren, S., He, K., Girshick, R., Sun, Jian. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), pp. 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
- Sredojev, B., Samardzija, D., Posarac, D. (2015). WebRTC technology overview and signaling solution design and implementation, 38th International Convention on Information and Communication Technology Electronics and Microelectronics (MIPRO), 2015, pp. 1006-1009.
- vGis. (2021). BIM and GIS Data In Augmented Reality, https://www.vgis.io/esri-augmented-reality-gis-ar-for-utilities-municipalities-locate-and-municipal-service-companies/ (May. 22. 2021).
- Xiao, B., Kang, S.-C. (2021). Development of an Image Data Set of Construction Machines for Deep Learning Object Detection, Journal of Computing in Civil Engineering, 35(2), https://doi.org/10.1061/(ASCE)CP.1943-5487.0000945.
- Yang, Z., Yuan, Y., Zhang, M., Zhao, X., Zhang, Y., Tian, B. (2019). Safety Distance Identification for Crane Drivers Based on Mask R-CNN, Sensors, 19(12), https://doi.org/10.3390/s19122789.
- Zollmann, S., Hoppe, C., Kluckner, S., Poglitsch, C., Bischof, H., Reitmayr, G. (2014). Augmented Reality for Construction Site Monitoring and Documentation, Proceedings of the IEEE, 102(2), pp. 137-154. https://doi.org/10.1109/JPROC.2013.2294314