DOI QR코드

DOI QR Code

Research on a Spectral Reconstruction Method with Noise Tolerance

  • Ye, Yunlong (School of Physics and Optoelectronic Engineering, Xidian University) ;
  • Zhang, Jianqi (School of Physics and Optoelectronic Engineering, Xidian University) ;
  • Liu, Delian (School of Physics and Optoelectronic Engineering, Xidian University) ;
  • Yang, Yixin (School of Physics and Optoelectronic Engineering, Xidian University)
  • Received : 2021.05.24
  • Accepted : 2021.07.26
  • Published : 2021.10.25

Abstract

As a new type of spectrometer, that based on filters with different transmittance features attracts a lot of attention for its advantages such as small-size, low cost, and simple optical structure. It uses post-processing algorithms to achieve target spectrum reconstruction; therefore, the performance of the spectrometer is severely affected by noise. The influence of noise on the spectral reconstruction results is studied in this paper, and suggestions for solving the spectral reconstruction problem under noisy conditions are given. We first list different spectral reconstruction methods, and through simulations demonstrate that these methods show unsatisfactory performance under noisy conditions. Then we propose to apply the gradient projection for sparse reconstruction (GRSR) algorithm to the spectral reconstruction method. Simulation results show that the proposed method can significantly reduce the influence of noise on the spectral reconstruction process. Meanwhile, the accuracy of the spectral reconstruction results is dramatically improved. Therefore, the practicality of the filter-based spectrometer will be enhanced.

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China under Grant Nos. 61774120 and 61705178.

References

  1. Y. C. Ha, J. H. Lee, Y. J. Koh, S. K. Lee, and Y. K. Kim, "Development of an ultraviolet Raman spectrometer for standoff detection of chemicals," Curr. Opt. Photon. 1, 247-251 (2017). https://doi.org/10.3807/COPP.2017.1.3.247
  2. N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, and J. W. Tunnell, "Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy," Appl. Opt. 49, 142-152 (2010). https://doi.org/10.1364/AO.49.000142
  3. A. A. Masoud, K. Koike, M. G. Atwia, M. M. El-Horiny, and K. S. Gemail, "Mapping soil salinity using spectral mixture analysis of landsat 8 OLI images to identify factors influencing salinization in an arid region," Int. J. Appl. Earth Obs. Geoinf. 83, 101944 (2019). https://doi.org/10.1016/j.jag.2019.101944
  4. C. Kim and T. Ji, "Real-time spectroscopic methods for analysis of organic compounds in water," Curr. Opt. Photon. 3, 336-341 (2019). https://doi.org/10.3807/copp.2019.3.4.336
  5. C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, "G-Fresnel smartphone spectrometer," Lab. Chip 16, 246-250 (2016). https://doi.org/10.1039/C5LC01226K
  6. D. R. Lobb, "Imaging spectrometers using concentric optics," Proc. SPIE 3118, 339-347 (1997).
  7. H.-A. Lin, H.-Y. Hsu, C.-W. Chang, and C.-S. Huang, "Compact spectrometer system based on a gradient grating period guided-mode resonance filter," Opt. Express 24, 10972-10979 (2016). https://doi.org/10.1364/OE.24.010972
  8. T. Pugner, J. Knobbe, and H. Gruger, "Near-infrared grating spectrometer for mobile phone applications," Appl. Spectrosc. 70, 734-745 (2016). https://doi.org/10.1177/0003702816638277
  9. M. Schardt, P. J. Murr, M. S. Rauscher, A. J. Tremmel, B. R. Wiesent, and A. W. Koch, "Static Fourier transform infrared spectrometer," Opt. Express 24, 7767-7776 (2016). https://doi.org/10.1364/OE.24.007767
  10. F. Cai, R. Tang, S. Wang, and S. He, "A compact line-detection spectrometer with a Powell lens," Optik 155, 267-272 (2018). https://doi.org/10.1016/j.ijleo.2017.11.022
  11. X. Ma, M. Li, and J. He, "CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array," IEEE Photonics J. 5, 6600807 (2013). https://doi.org/10.1109/JPHOT.2013.2250944
  12. S. Zheng, H. Cai, J. Song, J. Zou, P. Y. Liu, Z. Lin, D.-L. Kwong, and A.-Q. Liu, "A single-chip integrated spectrometer via tunable microring resonator array," IEEE Photonics J. 11, 6602809 (2019).
  13. J. Bao and M. G. Bawendi, "A colloidal quantum dot spectrometer," Nature 523, 67-70 (2015). https://doi.org/10.1038/nature14576
  14. Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, "Single-nanowire spectrometers," Science 365, 1017-1020 (2019). https://doi.org/10.1126/science.aax8814
  15. Z. Wang and Z. Yu, "Spectral analysis based on compressive sensing in nanophotonic structures," Opt. Express 22, 25608-25614 (2014). https://doi.org/10.1364/OE.22.025608
  16. C. Huang, G. Xia, S. Jin, M. Hu, S. Wu, and J. Xing, "Denoising analysis of compact CCD-based spectrometer," Optik 157, 693-706 (2018). https://doi.org/10.1016/j.ijleo.2017.11.170
  17. H. Yan and Y. Liu, "Improved gradient projection algorithm for deblurred image application," J. Phys.: Conf. Ser. 1575, 012021 (2020). https://doi.org/10.1088/1742-6596/1575/1/012021
  18. X. Zhang, Y. Ren, G. Feng, and Z. Qian, "Compressing encrypted image using compressive sensing," in Proc. 2011 Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing (Dalian, China, Oct. 2011), pp. 222-225.
  19. Y. Zuo, J. Zhang, and H. Xi, "Influence of detector noise on infrared images," Proc. SPIE 4548, 381-386 (2001).
  20. Y. Dai and J. Xu, "The noise analysis and noise reliability indicators of optoelectron coupled devices," Solid-State Electron. 44, 1495-1500 (2000). https://doi.org/10.1016/S0038-1101(00)00050-2
  21. U. Kurokawa, B. I. Choi, and C.-C. Chang, "Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization," IEEE Sens. J. 11, 1556-1563 (2011). https://doi.org/10.1109/JSEN.2010.2103054
  22. C. C. Chang, N.-T. Lin, U. Kurokawa, and B. I. Choi, "Spectrum reconstruction for filter-array spectrum sensor from sparse template selection," Opt. Eng. 50, 114402 (2011). https://doi.org/10.1117/1.3645086
  23. C.-C. Chang and H.-N. Lee, "On the estimation of target spectrum for filter-array based spectrometers," Opt. Express 16, 1056-1061 (2008). https://doi.org/10.1364/OE.16.001056
  24. Z. Xu, Z. Wang, M. E. Sullivan, D. J. Brady, S. H. Foulger, and A. Adibi, "Multimodal multiplex spectroscopy using photonic crystals," Opt. Express 11, 2126-2133 (2003). https://doi.org/10.1364/OE.11.002126
  25. Z. Leihong, Y. Xiao, Z. Dawei, and C. Jian, "Research on multiple-image encryption scheme based on Fourier transform and ghost imaging algorithm," Curr. Opt. Photon. 2, 315-323 (2018). https://doi.org/10.3807/COPP.2018.2.4.315
  26. R.-M. Lan, X.-F. Liu, X.-R. Yao, W.-K. Yu and G.-J. Zhai, "Single-pixel complementary compressive sampling spectrometer," Opt. Commun. 366, 349-353 (2016). https://doi.org/10.1016/j.optcom.2016.01.016
  27. R. Zhu, G.-S. Li, and Y. Guo, "Block-compressed-sensingbased reconstruction algorithm for ghost imaging," OSA Continuum 2, 2834-2843 (2019). https://doi.org/10.1364/osac.2.002834
  28. Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University Press, Cambridge, UK, 2012).
  29. S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev. 43, 129-159 (2001). https://doi.org/10.1137/s003614450037906x
  30. T. Yang, C. Li, Z. Wang, and H. Ho, "An ultra compact spectrometer based on the optical transmission through a micro interferometer array," Optik 124, 1377-1385 (2013). https://doi.org/10.1016/j.ijleo.2012.03.036
  31. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, "Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems," IEEE J. Sel. Top. Signal Processing 1, 586-597 (2007). https://doi.org/10.1109/JSTSP.2007.910281
  32. L. Zhang, Y. Zhai, and X. Wang, "Application of Barzilai-Borwein gradient projection for sparse reconstruction algorithm to image reconstruction of electrical capacitance tomography," Flow Meas. Instrum. 65, 45-51 (2019). https://doi.org/10.1016/j.flowmeasinst.2018.11.016
  33. D. Yang, C. Chang, G. Wu, B. Luo, and L. Yin, "Compressive ghost imaging of the moving object using the low-order moments," Appl. Sci. 10, 7941 (2020). https://doi.org/10.3390/app10217941
  34. Z. Wang, X. Ma, R. Chen, G. R. Arce, L. Dong, H.-J. Stock, and Y. Wei, "Comparison of different lithographic source optimization methods based on compressive sensing," Proc. SPIE 11327, 1132716 (2020).
  35. D. M. Malioutov, M. Cetin, and A. S. Willsky, "Homotopy continuation for sparse signal representation," Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (Philadelphia, PA, USA, Mar. 2005), Vol. 735, pp. v/733-v/736.
  36. K. Koh, S.-J. Kim, and S. Boyd, "An interior-point method for large-scale l1-regularized logistic regression," J. Mach. Learn. Res. 8, 1519-1555 (2007).
  37. G. Zonios, "Noise and stray light characterization of a compact CCD spectrophotometer used in biomedical applications," Appl. Opt. 49, 163-169 (2010). https://doi.org/10.1364/AO.49.000163
  38. J. J. Davenport, J. Hodgkinson, J. R. Saffell, and R. P. Tatam, "Noise analysis for CCD-based ultraviolet and visible spectrophotometry," Appl. Opt. 54, 8135-8144 (2015). https://doi.org/10.1364/AO.54.008135
  39. J. Oliver, W. Lee, S. Park, and H.-N. Lee, "Improving resolution of miniature spectrometers by exploiting sparse nature of signals," Opt. Express 20, 2613-2625 (2012). https://doi.org/10.1364/OE.20.002613
  40. J. Barzilai and J. M. Borwein, "Two-point step size gradient methods," IMA J. Numer. Anal. 8, 141-148 (1988). https://doi.org/10.1093/imanum/8.1.141
  41. H. Li, D. Xiang, X. Yang, and X. Zhang, "Compressed sensing method for IGBT high-speed switching time on-line monitoring," IEEE Trans. Ind. Electron. 66, 3185-3195 (2019). https://doi.org/10.1109/tie.2018.2847647
  42. H.-T. Fang and D.-S. Huang, "Noise reduction in lidar signal based on discrete wavelet transform," Opt. Commun. 233, 67-76 (2004). https://doi.org/10.1016/j.optcom.2004.01.017
  43. M. Zhang, C. Lu, and C. Liu, "Improved double-threshold denoising method based on the wavelet transform," OSA Continuum 2, 2328-2342 (2019). https://doi.org/10.1364/osac.2.002328