Acknowledgement
This study was supported by the National Research Foundation of Korea (NRF) (NRF-2019R1A2C1010243).
References
- J. W. Goodman, Introduction to Fourier optics, 3rd ed. (Roberts and Company Publishers, CO, USA. 2004).
- H. Gross, Handbook of Optical Systems: Fundamentals of Technical Optics (Wiley-VCH, Darmstadt, Germany. 2005), Vol. 1.
- K.-H. Brenner and W. Singer, "Light-propagation through microlenses: a new simulation method," Appl. Opt. 32, 4984-4988 (1993). https://doi.org/10.1364/AO.32.004984
- M. D. Feit and J. A. Fleck, "Light propagation in graded-index optical fibers," Appl. Opt. 17, 3990-3998 (1978). https://doi.org/10.1364/AO.17.003990
- J. Van Roey, J. van der Donk, and P. E. Lagasse, "Beampropagation method: analysis and assessment," J. Opt. Soc. Am. 71, 803-810 (1981). https://doi.org/10.1364/JOSA.71.000803
- S. Schmidt, T. Tiess, S. Schroter, R. Hambach, M. Jager, H. Bartelt, A. Tunnermann, and H. Gross, "Wave-optical modeling beyond the thin-element-approximation," Opt. Express 24, 30188-30200 (2016). https://doi.org/10.1364/OE.24.030188
- T. D. Gerke and R. Piestun, "Aperiodic volume optics," Nat. Photonics 4, 188-193 (2010). https://doi.org/10.1038/nphoton.2009.290
- M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, "Maximal energy transport through disordered media with the implementation of transmission eigenchannels," Nat. Photonics 6, 581-585 (2012). https://doi.org/10.1038/nphoton.2012.159
- Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, "Overcoming the diffraction limit using multiple light scattering in a highly disordered medium," Phys. Rev. Lett. 107, 023902 (2011). https://doi.org/10.1103/PhysRevLett.107.023902
- S. Y. Lee, K. Lee, S. Shin, and Y. K. Park, "Generalized image deconvolution by exploiting spatially variant point spread functions," arXiv:1703.08974 (2017).
- J. Chung, G. W. Martinez, K. C. Lencioni, S. R. Sadda, and C. Yang, "Computational aberration compensation by coded-aperture-based correction of aberration obtained from optical Fourier coding and blur estimation," Optica 6, 647-661 (2019). https://doi.org/10.1364/optica.6.000647
- C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, "Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina," ACM Trans. Graph. 36, 190 (2017).
- S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, "Additive light field displays: realization of augmented reality with holographic optical elements," ACM Trans. Graph. 35, 60 (2016).
- H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969). https://doi.org/10.1002/j.1538-7305.1969.tb01198.x
- M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981). https://doi.org/10.1364/JOSA.71.000811
- H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC Press, NY, USA. 2012).
- P. S. Carney, J. C. Schotland, and E. Wolf, "Generalized optical theorem for reflection, transmission, and extinction of power for scalar fields," Phys. Rev. E 70, 036611 (2004). https://doi.org/10.1103/physreve.70.036611