A study of fabrication of LIPSS using flat-top beam with various materials

다양한 재질에서의 flat-top 빔을 이용한 LIPSS 형성에 관한 연구

  • Choi, Jun-Ha (Department of Nano-Mechatronics, Korea University of Science and Technology) ;
  • Choi, Won-Suk (Department of Nano-manufacturing Technology, Korea Institute of Machinery and Material) ;
  • Shin, Young-Gwan (Department of Nano-Mechatronics, Korea University of Science and Technology) ;
  • Cho, Sung-Hak (Department of Nano-Mechatronics, Korea University of Science and Technology) ;
  • Choi, Doo-Sun (Department of Nano-manufacturing Technology, Korea Institute of Machinery and Material)
  • 최준하 (과학기술연합대학원대학교 나노메카트로닉스학과) ;
  • 최원석 (한국기계연구원 나노공정연구실) ;
  • 신영관 (과학기술연합대학원대학교 나노메카트로닉스학과) ;
  • 조성학 (과학기술연합대학원대학교 나노메카트로닉스학과) ;
  • 최두선 (한국기계연구원 나노공정연구실)
  • Received : 2021.09.10
  • Accepted : 2021.09.30
  • Published : 2021.09.30

Abstract

In this study, laser-induced periodic surface structure (LIPSS) was fabricated on Ni, Si, and GaAs samples using a flat-top beam with a uniform energy distribution that was fabricated using a Gaussian femtosecond laser with a mechanical slit and tube lens. Unlike the Gaussian beam, the flat-top beam has a uniform beam profile, therefore the center and the periphery of the fabricated LIPSS have similar line periodicity. In addition, LIPSS was obtained not only in metals but also in metalloids and metals and metalloid compounds by using the narrow pulse width characteristic of a femtosecond laser.

Keywords

References

  1. J. Bonse, J. Kruger, S. Hohm, A. Rosenfeld, "Femtosecond laser-induced periodic surface structures", J. Laser Appl. 24, 042006, 2012. https://doi.org/10.2351/1.4712658
  2. J. Bonse, H. Sturm, D. Schmidt, W. Kautek, "Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air", Appl. Phys. A Mater. Sci. Process. 71, pp. 657-665, 2000 . https://doi.org/10.1007/s003390000585
  3. J. Bonse, S. Baudach, J. Kruger, W. Kautek, M. Lenzner, "Femtosecond laser ablation of silicon-modification thresholds and morphology", Appl. Phys. A Mater. Sci. Process. 74, pp. 19-25, 2002. https://doi.org/10.1007/s003390100893
  4. J. Wang, C. Guo, "Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals", Appl. Phys. Lett. 87, pp. 1-3, 2005.
  5. J. Bonse, S. V. Kirner, S. Hohm, N. Epperlein, D. Spaltmann, A. Rosenfeld, J. Kruger, "Applications of laser-induced periodic surface structures (LIPSS)", Laser-Based Micro- Nanoprocessing XI. 10092, 100920N, 2017.
  6. R.P. Seisyan, Nanolithography in microelectronics: A review", Tech. Phys. 56, pp. 1061-1073, 2011. https://doi.org/10.1134/S1063784211080214
  7. K.L. Lee, P.K. Wei, "Optimization of periodic gold nanostructures for intensity-sensitive detection", Appl. Phys. Lett. 99, 2011.
  8. L. Parellada-Monreal, I. Castro-Hurtado, M. Martinez-Calderon, L. Presmanes, G.G. Mandayo, "Laser-induced periodic surface structures on ZnO thin film for high response NO 2 detection", Appl. Surf. Sci. 476, pp. 569-575, 2019. https://doi.org/10.1016/j.apsusc.2019.01.115
  9. A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, S. Hava, "Metal grating on a substrate nanostructure for sensor applications", Photonics Nanostructures - Fundam. Appl. 7, pp. 170-175, 2009. https://doi.org/10.1016/j.photonics.2009.05.001
  10. Z. Dai, C.S. Lee, B.Y. Kim, C.H. Kwak, J.W. Yoon, H.M. Jeong, J.H. Lee, "Honeycomb-like periodic porous LaFeO3 thin film chemiresistors with enhanced gas-sensing performances", ACS Appl. Mater. Interfaces. 6, pp. 16217-16226, 2014. https://doi.org/10.1021/am504386q
  11. C. Valsecchi, A.G. Brolo, "Periodic metallic nanostructures as plasmonic chemical sensors", Langmuir. 29, pp. 5638-5649, 2013. https://doi.org/10.1021/la400085r
  12. A. Pimpin, W. Srituravanich, "Reviews on microand nanolithography techniques and their applications", Eng. J. 16, pp. 37-55, 2012.
  13. S. Aksu, A.A. Yanik, R. Adato, A. Artar, M. Huang, H. Altug, "High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy", Nano Lett. 10 (2010) pp. 2511-2518, 2010. https://doi.org/10.1021/nl101042a.
  14. J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, J. Kruger, "Laser-Induced Periodic Surface Structures-A Scientific Evergreen", IEEE J. Sel. Top. Quantum Electron. 23, pp. 109-123, 2017. https://doi.org/10.1109/JSTQE.2016.2614183.
  15. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, "Laser-induced periodic surface structure. I. Theory", Phys. Rev. B. 27, pp. 1141-1154, 1983. https://doi.org/10.1103/PhysRevB.27.1141
  16. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, "Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser", ACS Nano. 3, pp. 4062-4070, 2009. https://doi.org/10.1021/nn900654v
  17. J. Bonse, A. Rosenfeld, J. Kruger, "On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses", J. Appl. Phys. 106, 2009. https://doi.org/10.1152/japplphysiol.00914.2007
  18. R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, S. Juodkazis, "Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback", Nanotechnology, 22, 2011.
  19. J.J.J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, S. Amoruso, "Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate", Sci. Rep. 5, pp. 1-12, 2015.
  20. Mirza I, Bulgakova NM, Tomastik J, Michalek V, Haderka O, Fekete L, et al. "Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms", role of breakdown. Sci Rep, pp. 1-11, 2016.6.
  21. Nedialkov NN, Imamova SE, Atanasov PA. "Ablation of metals by ultrashort laser pulses", J Phys D Appl. Phys, pp. 638-43, 2004;37. https://doi.org/10.1088/0022-3727/37/4/016
  22. Ashkenasi D, Muller G, Rosenfeld A, Stoian R, Hertel I V., Bulgakova NM, et al. "Fundamentals and advantages of ultrafast micro-structuring of transparent materials", Appl. Phys A Mater Sci Process 2003;77:223-8, 2003. https://doi.org/10.1007/s00339-003-2143-3
  23. Chichkov, B. N., Momma, C., Nolte, S., Von Alvensleben, F., & Tunnermann, "A Femtosecond, picosecond and nanosecond laser ablation of solids", Applied phys A 1996; pp. 109-115, 1996.
  24. Perry MD, Stuart BC, Banks PS, Feit MD, Yanovsky V, Rubenchik AM. "Ultrashort-pulse laser machining of dielectric materials", J Appl. Phys 1999;85:6803-10, 1999. https://doi.org/10.1063/1.370197
  25. Ams M, Little DJ, Withford MJ. "Femtosecond-laser-induced refractive index modifications for photonic device processing", Woodhead Publishing Limited, 2012.
  26. Sugioka K, Cheng Y. "Femtosecond laser three-dimensional micro-and nanofabrication", Appl Phys Rev 2014;1.
  27. H.W. Chang, Y.C. Tsai, C.W. Cheng, C.Y. Lin, Y.W. Lin, T.M. Wu, "Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering", J. Colloid Interface Sci. 360, pp. 305-308, 2011. https://doi.org/10.1016/j.jcis.2011.04.005
  28. C. Byram, S.S.B. Moram, V.R. Soma, "Surface-enhanced Raman scattering studies of gold-coated ripple-like nanostructures on iron substrate achieved by femtosecond laser irradiation in water", J. Raman Spectrosc. 50, pp. 1103-1113, 2019. https://doi.org/10.1002/jrs.5617
  29. A. Wang, L. Jiang, X. Li, Q. Xie, B. Li, Z. Wang, K. Du, Y. Lu, "Low-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detection", J. Mater. Chem. B. 5, pp. 777-784, 2017. https://doi.org/10.1039/C6TB02629J
  30. I. Gnilitskyi, T.J.Y. Derrien, Y. Levy, N.M. Bulgakova, T. Mocek, L. Orazi, "High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: Physical origin of regularity", Sci. Rep. 7, pp. 1-11, 2017. https://doi.org/10.1038/s41598-016-0028-x
  31. M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, "Ultrashort-pulse laser machining of dielectric materials", J. Appl. Phys. 85, pp. 6803-6810, 1999. https://doi.org/10.1063/1.370197
  32. M. Ams, D.J. Little, M.J. Withford, "Femtosecond-laser-induced refractive index modifications for photonic device processing", Woodhead Publishing Limited, 2012.