DOI QR코드

DOI QR Code

Performance Evaluation of Mortar Containing Mechanochemical Treated Self-Healing Admixtures

기계·화학 처리 자기치유 혼화재가 포함된 모르타르의 성능평가

  • 박동철 ((주)위드엠텍) ;
  • 권혁 ((주)위드엠텍 기술연구소) ;
  • 이정우 ((주)위드엠텍 기술연구소) ;
  • 황무연 ((주)위드엠텍 기술연구소) ;
  • 김태형 ((주)위드엠텍 기술연구소)
  • Received : 2021.08.18
  • Accepted : 2021.09.09
  • Published : 2021.09.30

Abstract

In this study, the applicability of mechanochemical process for the manufacture of self-healing admixtures and the effect of mechanochemical process on the self-healing performance were evaluated. The self-healing admixtures were adopted as a highly reactive materials(expansive agent, swelling material and crystal growth agent) for mechanochemical processes. The self-healing admixtures for the mechanochemical process application were evaluated by X-Ray Diffraction and Fourier Transform Infrared Spectroscopy analysis, water permeability performance was used to evaluate self-healing performance of mortar. As a result of the evaluation, the self-healing performance of the WM(With-Mortar)3 sample to which mechanochemical process increased by 4.1% compared to the WM1 sample that was not treated, and the average healing index was 94.3%.

본 연구는 기계·화학적 에너지를 활용하는 메카노케미칼 공정기술을 자기치유 혼화재에 적용하기 위한 목적으로 진행되었다. 기계·화학적 공정기술을 자기치유 혼화재 제조 공정에 적용하여 치유 소재의 활성화 에너지를 증가시켜 치유성능에 미치는 영향을 확인하고자 하였다. 자기치유 모르타르에 사용한 자기치유 소재는 팽창/팽윤제를 주요 구성물로 선정하고 탄산염 촉진제와 무기염 첨가제를 기타 첨가제로 혼입하였으며, 기계·화학 처리공정 적용에 의한 치유 소재의 활성화도 및 개질화 반응이 가능한 재료로 선택하였다. 기계·화학 처리공정에 대한 자기치유 혼화재의 기초평가는 XRD, FT-IR 분석으로 확인하였으며, 자기치유 모르타르의 치유 성능평가는 정수위 투수시험을 이용하여 치유율을 확인하였다. 치유성능 확인결과 기계·화학 처리 공정을 적용한 WM3 시료(MC360min)가 공정처리 하지 않은 WM1 시료에 대비 치유성능이 4.1% 증가하였으며, 자기치유율은 평균 94.3%로 확인되었다.

Keywords

Acknowledgement

본 연구는 국토교통부 건설기술연구사업의 연구비 지원(21SCIP-C159059-02)에 의해 수행되었습니다.

References

  1. Ahn, T.H., Kishi, T. (2010). Crack self-healing behavior of cementitious composites incorporating various mineral admixtures, Journal of Concrete Technology, 8(2), 171-186. https://doi.org/10.3151/jact.8.171
  2. An, E.J., Shin, M.S. (2014). Healing mechanisms and assessment techniques of self-healing concrete, Proceeding of Korea Concrete Institute, 26(2), 477-479 [in Korean].
  3. Balaz, P. (2008). Mechanochemistry in Nanoscience and Minerals Engineering, Chapter 5, 257-292.
  4. Choi, S.W., Bae, W.H., Lee, K.M., Shin, K.J. (2017). Correlation between crack width and water flow of cracked mortar specimens measured by constant water head permeability test, Journal of the Korea Concrete Institute, 29(3), 267-273 [in Korean]. https://doi.org/10.4334/JKCI.2017.29.3.267
  5. De Rooij, M., Van Tittelboom, K., De Belie, N., Schlangen, E. (2011). Self Healing Phenomena in Cement Based Materials, Draft of State of the Art Report of RILEM Technical Committee, 217-240.
  6. Durgalakshmi, D., Ajay Rakkesh, R., Syed Kamil. (2019). Rapid dilapidation of alcohol using magnesium oxide and magnesium aspartate based nanostructures: a raman spectroscopic and molecular simulation approach, Journal of inorganic and Organometallic Polymers and Materials, 29(4), 1390-1399. https://doi.org/10.1007/s10904-019-01105-3
  7. Heinicke, G. (1984). Tribochemistry, Crystal Research and Technology, 19(11), 1424-1424. https://doi.org/10.1002/crat.2170191103
  8. Ryu, H.J. (1997). A study on the mechanochemical effects of dickite, Korea Journal of Materials Research, 7(2), 152-156 [in Korean].
  9. Kaminski, P. (2020). The application of FTIR in situ spectroscopy combined with methanol adsorption to the study of mesoporous sieve SBA-15 with cerium-zirconium oxides modified with gold and copper species, Arabian Journal of chemistry, 13(1), 851-862. https://doi.org/10.1016/j.arabjc.2017.08.004
  10. Putniscd, C.V. (2016). Effect of ferrous iron on the nucleation and growth of CaCO3 in slightly basic aqueous solutions, CrystEngComm, 19(3), 447-460. https://doi.org/10.1039/C6CE02290A
  11. Lee, K.M., Park, B.S. (2019). State of the art of self healing concrete, Magazine of the Korea Concrete Institute, 31(2), 10-14 [in Korean].
  12. Lee, K.M., Kim, H.S., Min, K.S., Choi, S. (2020). Evaluation method of self-healing performance of cement composites, Journal of the Korean Recycled Construction Resources Institute, 8(1), 134-142 [in Korean]. https://doi.org/10.14190/JRCR.2020.8.1.134
  13. Shin, H.Y. (2000). A Study on the Mechanochemical Characteristics of the Fine Quartz Product after Planetary Milling, Ph.D Thesis, Geoenvironmental System Engineering of Hanyang University, 7-34 [in Korean].
  14. Schlangen, E., Sangadji, S. (2013). Addressing infrastructure durability and sustainability by self healing mechanisms-recent advances in self healing concrete and asphalt, Procedia Engineering, 54, 39-57. https://doi.org/10.1016/j.proeng.2013.03.005
  15. Simon, S., Wasinton, S., Rudy, S., Agus, R. (2017). Effect of MgO-SiO2 ratio on the forsterite(Mg2SiO4) precursors characteristics derived from amorphous rice husk silica, Oriental Journal of Chemistry, 33(4), 1828-1836. https://doi.org/10.13005/ojc/330427
  16. Tanaka, T. (1954). A new concept applying a final finenss value to grinding mechanism, Chemistry, 18(4), 160-171.
  17. Xing, F., Zhuo, N., Jiaoning, T., Xu, D. (2013). State of the art of self healing concrete, Journal of Shenzhen University Science and Engineering, 30(5), 486-494. https://doi.org/10.3724/SP.J.1249.2013.05486
  18. Zhang, Q., Saito, F. (2012). A review on mechanochemical syntheses of functional materials, Advanced Powder Technology, 23(5), 523-531. https://doi.org/10.1016/j.apt.2012.05.002