DOI QR코드

DOI QR Code

Soil consistency and interparticle characteristics of various biopolymer types stabilization of clay

  • Cheng, Zhanbo (School of Engineering, University of Warwick) ;
  • Geng, Xueyu (School of Engineering, University of Warwick)
  • Received : 2020.03.26
  • Accepted : 2021.09.27
  • Published : 2021.10.25

Abstract

An environmentally friendly improvement method with using biopolymer stabilization of soil has been currently paid more attention for geotechnical engineering practices. And the existing concerns focused on the performance of biopolymers treated clay due to the occurrence of electrical interaction. Therefore, the effect of biopolymer types and water content on the behaviors of biopolymer-clay mixture should be firstly explored in terms of biopolymer applications. In this study, fall cone tests were conducted to evaluate the consistency variations of eight types of biopolymers treated clay, e.g., carrageenan kappa gum (KG), locust bean gum (LBG), xanthan gum (XG), agar gum (AG), guar gum (GG), sodium alginate (SA), gellan gum (GE) and chitosan (CH) at various biopolymer concentrations (e.g., between 0.1% to 5% biopolymer to soil mass ratio). The results indicated that neutral biopolymers (e.g., LBG and GG) significantly caused the increase of liquid limit and undrained shear strength regardless of biopolymer concentration. And the liquid limit and undrained shear strength of negative charged biopolymers (e.g., KG, SA, GE and XG) treated clay decreased firstly following increased, while AG and CH had limit effect on soil consistency. In addition, the trend of plasticity index was similar to liquid limit altering the USCS classification of biopolymer treated clay as silt or clay. Moreover, empirical equations determining undrained shear strength and shear viscosity of biopolymer-treated clay were also established.

Keywords

Acknowledgement

The authors wish to acknowledge the support from the National Natural Science Foundation of China (51978533, 51608323, 51678319), China Scholarship Council (CSC), Shandong Natural Science Foundation (ZR2016EEM40), European Union's Horizon 2020 research and innovation programme Marie Sklodowska-Curie Actions Research and Innovation Staff Exchange (RISE) (No. 778360).

References

  1. Andrew, R.M. (2018), "Global CO2 emissions from cement production", Earth Syst. Sci. Data, 10(1), 195-217. https://doi.org/10.5194/essd-10-195-2018
  2. ASTM 2017 (2017), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM standard D4318, American Society for Testing and Materials; West Conshohocken, Pennsylvania, U.S.A.
  3. Ayeldeen, M.K., Negm, A.M. and El Sawwaf, M.A. (2016), "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 371. https://doi.org/10.1007/s12517-016-2366-1.
  4. Barak, S. and Mudgil, D. (2014), "Locust bean gum: processing, properties and food applications-a review", Int. J. Biol. Macromol., 66, 74-80. https://doi.org/10.1016/j.ijbiomac.2014.02.017.
  5. BS 1377 (1990), Methods of test for soils for civil engineering purposes. Part 2: Classification Tests, British Standards Institution (BSI); London, United Kingdom.
  6. Cao, J., Jung, J., Song, X. and Bate, B. (2018), "On the soil water characteristic curves of poorly graded granular materials in aqueous polymer solutions", Acta Geotech., 13(1), 103-116. https://doi.org/10.1007/s11440-017-0568-7.
  7. Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. http://doi.org/10.12989/gae.2014.7.6.633.
  8. Chang, I., Im, J. and Cho, G.C. (2016), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251.
  9. Chang, I., Im, J., Lee, S.W. and Cho, G.C. (2017), "Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying", Constr. Build. Mater., 143, 210-221. https://doi.org/10.1016/j.conbuildmat.2017.02.061.
  10. Chang, I., Kwon, Y.M., Im, J. and Cho, G.C. (2019), "Soil consistency and inter-particle characteristics of xanthan gum biopolymer containing soils with pore-fluid variation", Can. Geotech. J.. 56(8), 1206-1213. https://doi.org/10.1139/cgj-2018-0254.
  11. Chen, C., Wu, L., Perdjon, M., Huang, X. and Peng, Y. (2019), "The drying effect on xanthan gum biopolymer treated sandy soil shear strength", Constr. Build. Mater.. 197, 271-279. https://doi.org/10.1016/j.conbuildmat.2018.11.120.
  12. Chen, R., Zhang, L. and Budhu, M. (2013), "Biopolymer stabilization of mine tailings", J. Geotech. Geoenviron., 139(10), 1802-1807. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000902.
  13. Cheng, Z., Ni, J., Ding, H. and Geng, X. (2020), "Fall cone test on biopolymer-treated clay", Proceedings of 4th European Conference on Unsaturated Soils, Lisbon, Portugal, June.
  14. Dave, P.N. and Gor, A. (2018), "Natural polysaccharide-based hydrogels and nanomaterials: Recent trends and their applications", Handbook of Nanomaterials for Industrial Applications, Elsevier, Amsterdam, The Netherlands, 36-66.
  15. DeJong, J.T., Mortensen, B.M., Martinez, B.C. and Nelson, D.C. (2010), "Bio-mediated soil improvement", Ecol. Eng., 36, 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
  16. Feng, T.W. (2000), "Fall-cone penetration and water content relationship of clays", Geotechnique 50(2), 181-187. https://doi.org/10.1680/geot.2000.50.2.181.
  17. Feng, T.W. (2001), "A linear log d-log w model for the determination of consistency limits of soils", Can. Geotech. J. 38, 1335-1342. https://doi.org/10.1139/t01-061.
  18. Garcia-Ochoa, F., Santos, V.E., Casas, J.A. and Gomez, E. (2000), "Xanthan gum: production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1.
  19. Ham, S.M., Chang, I., Noh, D.H., Kwon, T.H. and Muhunthan, B. (2018), "Improvement of surface erosion resistance of sand by microbial biopolymer formation", J. Geotech. Geoenviron., 144(7), 06018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900.
  20. Hansbo, S. (1957), "A new approach to the determination of the shear Strength of clay by the fall cone test", Royal Swedish Geotechnical Institute Proceedings No.14, Royal Swedish Geotechnical Institute, Stockholm, Sweden, 7-48.
  21. Huang, H., Wu, M., Yang, H., Li, X., Ren, M., Li, G. and Ma, T. (2016), "Structural and physical properties of sanxan polysaccharide from Sphingomonas sanxanigenens", Carbohyd. Polym., 144, 410-418. https://doi.org/10.1016/j.carbpol.2016.02.079.
  22. Ivanov, V. and Chu, J. (2008), "Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ", Reviews Environ. Sci. Bio/Technology, 7(2), 139-153. https://doi.org/10.1007/s11157-007-9126-3.
  23. Kang, X., Bate, B., Chen, R., Yang, W. and Wang, F. (2019), "Physicochemical and Mechanical Properties of Polymer-Amended Kaolinite and Fly Ash-Kaolinite Mixtures", J. Mater. Civ. Eng., 31(6), 04019064. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002705.
  24. Karmakar, P., Ghosh, T., Sinha, S., Saha, S., Mandal, P., Ghosal, P.K. and Ray, B. (2009), "Polysaccharides from the brown seaweed Padina tetrastromatica: Characterization of a sulfated fucan", Carbohyd. Polym., 78(3), 416-421. https://doi.org/10.1016/j.carbpol.2009.04.039.
  25. Koumoto, T. and Houlsby, G.T. (2001), "Theory and practice of the fall cone test", Geotechnique, 51(8), 701-712. https://doi.org/10.1680/geot.2001.51.8.701.
  26. Kwon, Y.M., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behavior of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.453.
  27. Laird, D.A. (1997), "Bonding between polyacrylamide and clay mineral surfaces", Soil Sci., 162(11), 826-832. https://doi.org/10.1097/00010694-199711000-00006
  28. Latifi, N., Horpibulsuk, S., Meehan, C.L., Majid, M.Z.A., Tahir, M.M. and Mohamad, E.T. (2017), "Improvement of problematic soils with biopolymer-An environmentally friendly soil stabilizer", J. Mater. Civil Eng., 29(2). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706.
  29. Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.
  30. Mahajan, S.P. and Budhu, M. (2009), "Shear viscosity of clays using the fall cone test", Geotechnique. 59(6), 539-543. https://doi.org/10.1680/geot.7.00114.
  31. Ni, J., Hao, G.L., Chen, J.Q., Ma, L. and Geng, X.Y. (2021), "The optimisation analysis of sand-clay mixtures stabilised with xanthan gum biopolymers", Sustainability, 13(7), 3732. https://doi.org/10.3390/su13073732.
  32. Ni, J., Li, S.S., Ma, L. and Geng, X.Y. (2020), "Performance of soils enhanced with eco-friendly biopolymers in unconfined compression strength tests and fatigue loading tests", Constr. Build. Mater.. 263, 120039. https://doi.org/10.1016/j.conbuildmat.2020.120039.
  33. Nugent, R.A., Zhang, G. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transportation Res. Record 2101(1), 34-43. https://doi.org/10.3141/2101-05.
  34. Reddy, N.G., Rao, B.H. and Reddy, K.R. (2018), "Biopolymer amendment for mitigating dispersive characteristics of red mud waste", Geotech. Lett. 8(3), 201-207. https://doi.org/10.1680/jgele.18.00033.
  35. Rhein-Knudsen, N., Ale, M.T. and Meyer, A.S. (2015), "Seaweed hydrocolloid production: An update on enzyme assisted extraction and modification technologies", Mar. Drugs, 13(6), 3340-3359. https://doi.org/10.3390/md13063340.
  36. Santos, V.P., Marques, N.S., Maia, P.C., Lima, M.A.B.D., Franco, L.D.O. and Campos-Takaki, G.M.D. (2020), "Seafood waste as attractive source of chitin and chitosan production and their applications", Int. J. Mol. Sci., 21(12), 4290. https://doi.org/10.3390/ijms21124290.
  37. Sastry, N.V., Sequaris, J.M. and Schwuger, M.J. (1995), "Adsorption of polyacrylic acid and sodium dodecylbenzenesulfonate on kaolinite", J. Colloid Interf. Sci., 171(1), 224-233. https://doi.org/10.1006/jcis.1995.1171.
  38. Smitha, S. and Sachan, A. (2016), "Use of agar biopolymer to improve the shear strength behavior of sabarmati sand", Int. J. Geotech. Eng., 10(4), 387-400. https://doi.org/10.1080/19386362.2016.1152674.
  39. Sridharan, A. and Prakash, K. (1999), "Mechanisms controlling the undrained shear strength behaviour of clays", Can. Geotech. J., 36(6), 1030-1038. https://doi.org/10.1139/t99-071
  40. Sridharan, A., Rao, S.M. and Murthy, N.S. (1988), "Liquid limit of kaolinitic soils", Geotechnique, 38(2), 191-198. https://doi.org/10.1680/geot.1988.38.2.191.
  41. Tran, A.T.P., Chang, I. and Cho, G.C. (2019), "Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands", Geomech. Eng., 17(5), 475-483. https://doi.org/10.12989/gae.2019.17.5.475.
  42. van de Velde, F. (2008), "Structure and function of hybrid carrageenans", Food Hydrocolloids, 22(5), 727-734. https://doi.org/10.1016/j.foodhyd.2007.05.013.
  43. Venugopal, K.N. and Abhilash, M. (2010), "Study of hydration kinetics and rheological behaviour of guar gum", Int. J. Pharma Sci. Res., 1(1), 28-39. https://doi.org/10.7439/IJASR.V1I1.1660.
  44. Viswanath, S.M., Booth, S.J., Hughes, P.N., Augarde, C.E., Perlot, C., Bruno, A.W. and Gallipoli, D. (2017), "Mechanical properties of biopolymer-stabilised soil-based construction materials", Geotech. Lett., 7(4), 309-314. https://doi.org/10.1680/jgele.17.00081.
  45. Whiffin, V.S., van Paassen, L.A. and Harkes, M.P. (2007), "Microbial carbonate precipitation as a soil improvement technique", Geomicrobiol. J., 24, 417-423. https://doi.org/10.1080/01490450701436505.
  46. Wood, D.M. (1985), "Some fall cone tests", Geotechnique, 35(1), 64-68. https://doi.org/10.1680/geot.1985.35.1.64
  47. Yang, J.S., Xie, Y.J. and He, W. (2011), "Research progress on chemical modification of alginate: A review", Carbohydrate Polym., 84(1), 33-39. https://doi.org/10.1016/j.carbpol.2010.11.048.
  48. Youssef, A.M., Assem, F.M., El-Sayed, S.M., Salama, H. and Abd El-Salam, M.H. (2017), "Utilization of edible films and coatings as packaging materials for preservation of cheeses", J. Packaging Technol. Res., 1(2), 87-99. https://doi.org/10.1007/s41783-017-0012-3.