DOI QR코드

DOI QR Code

Impact of grain size or anisotropy on correlations between rock tensile strength and some rock index properties

  • Kong, Fanmeng (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Xue, Yiguo (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Qiu, Daohong (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Li, Zhiqiang (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Chen, Qiqi (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Song, Qian (Geotechnical and Structural Engineering Research Center, Shandong University)
  • 투고 : 2020.04.23
  • 심사 : 2021.10.06
  • 발행 : 2021.10.25

초록

Brazilian tensile strength (BTS) is a critical mechanical parameter of rock; and the measurement of BTS performed on core samples is a cumbersome procedure. Thus, rock index properties including point load, P-wave velocity and Schmidt hammer tests have been widely used to estimate BTS. The correlations between BTS and index properties are rock-type, grain size and anisotropy dependent, but, how the correlations related to the variation of grain size or anisotropy remain unexplained. In this study, the impact of grain size or anisotropy on those correlations is respectively examined using sandstone (fine or coarse grain size) and gneiss (0°, 45°, 90° inclined anisotropy) samples. Several significant equations for predicting BTS through index properties were established for different types of samples. The finding implies that either grain size variation or multidirectional anisotropy reduces not only the correlated degree between BTS and index properties, but also the BTS estimation reliability of those empirical equations. All three index properties should be used with much care for coarse-grained rock and respectively performed on samples with unidirectional anisotropy. Using an empirical equation between BTS and index properties ignoring grain size or anisotropy can yield considerable discrepancies of estimated BTS. Among three index properties, point load test is the first choice for predicting BTS as the small discrepancies of estimated results. As the invalid correlation, P-wave velocity test should not be performed at 45° angle to the anisotropy in the BTS estimation; and this recommendation is also appropriate for Schmidt hammer test conducted parallel to anisotropy.

키워드

과제정보

This work is financially supported by the National Natural Science Foundation of China (grant numbers 41877239, 41772298, 51379112, 51422904 and 40902084), and Fundamental Research Fund of Shandong University (grant number 2018JC044), and Shandong Provincial Natural Science Foundation (grant number 2019GSF111028 and JQ201513).

참고문헌

  1. Aliyu, M.M., Shang, J., Murphy, W., Lawrence, J.A., Collier, R., Kong, F. and Zhao, Y.Z. (2019), "Assessing the uniaxial compressive strength of extremely hard cryptocrystalline flint", Int. J. Rock Mech. Min. Sci, 113, 310-321. https://doi.org/10.1016/j.ijrmms.2018.12.002.
  2. ASTM (2008), Standard test method for splitting tensile strength of intact rock core specimens (D3967-08), ASTM International; West Conshohocken, U.S.A.
  3. Aydin, A. (2009), "ISRM suggested method for determination of the Schmidt hammer rebound hardness: revised version", Int. J. Rock Mech. Min. Sci, 46(3), 627-634. https://doi.org/10.1016/j.ijrmms.2008.01.020.
  4. Broch, E. (1983), "Estimation of strength anisotropy using the point-load test", Int. J. Rock. Mech. Min. Sci., 20, 181-187. https://doi.org/10.1016/0148-9062(83)90942-7.
  5. Butenuth, C. (1997), "Comparison of tensile strength values of rocks determined by point load and direct tension tests", Rock. Mech. Rock. Eng., 30, 65-72. https://doi.org/10.1007/BF01020114.
  6. Cai, M., and Kaiser, P.K. (2005), "Assessment of excavation damaged zone using a micromechanics model", Tunn. Undergr. Sp. Tech., 20, 301-310. https://doi.org/10.1016/j.tust.2004.12.002.
  7. China Geological Survey (2019), Geological Cloud of China Geological Survey; China Geological, Survey Beijing, China. www.cgs.gov.cn.
  8. China National Standard (2013), Standard for Test Methods of Engineering Rock Mass (GB/T 50266-2013), Ministry of Housing and Urban-Rural Development of the People's Republic of China; Beijing, China.
  9. Erarslan, N. and Williams, D. J. (2012), "Experimental, numerical and analytical studies on tensile strength of rocks", In. J. Rock. Mech. Min. Sci, 49, 21-30. https://doi.org/10.1016/j.ijrmms.2011.11.007.
  10. Fereidooni, D. (2016), "Determination of the geotechnical characteristics of hornfelsic rocks with a particular emphasis on the correlation between physical and mechanical properties", Rock. Mech. Rock. Eng., 49(7), 2595-2608. https://doi.org/10.1007/s00603-016-0930-3.
  11. Fereidooni, D. and Khajevand, R. (2018), "Determining the geotechnical characteristics of some sedimentary rocks from Iran with an emphasis on the correlations between physical, index, and mechanical properties", Geotech. Test. J., 41(3), 555-573. https://doi.org/10.1520/GTJ20170058.
  12. Gurocak, Z., Solanki, P., Alemdag, S. and Zaman, M.M. (2012), "New considerations for empirical estimation of tensile strength of rocks", Eng. Geol., 145-146, 1-8. https://doi.org/10.1016/j.enggeo.2012.06.005.
  13. Heidari, M., Khanlari, G.R., Kaveh, M.T. and Kargarian, S. (2012), "Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing", Rock. Mech. Rock. Eng., 45(2), 265-273. https://doi.org/10.1007/s00603-012-0264-8.
  14. ISRM (1978), "Suggested methods for determining tensile strength of rock materials", Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 15, 99-103. https://doi.org/10.1016/0148-9062(78)90003-7.
  15. ISRM (2015), "ISRM Suggested method for determination of the Schmidt hammer rebound hardness: Revised version", The ISRM Suggested methods for rock characterization, testing and monitoring: 2007-2014, International Society for Rock Mechanics Commission on Testing Methods, London, U.K.
  16. Jamshidi, A., Zamanian, H. and Sahamieh, R.Z. (2018), "The effect of density and porosity on the correlation between uniaxial compressive strength and P-wave velocity", Rock. Mech. Rock. Eng., 51(4), 1279-1286. https://doi.org/10.1007/s00603-017-1379-8.
  17. Kahraman, S., Fener, M., Kasling, H. and Thuro, K. (2018), "Investigating the effect of strength on the LCPC abrasivity of igneous rocks", Geomech. Eng., 15(2), 805-810. https://doi.org/10.12989/gae.2018.15.2.805.
  18. Karakul, H. and Ulusay, R. (2013), "Empirical correlations for predicting strength properties of rocks from P-wave velocity under different degrees of saturation", Rock. Mech. Rock. Eng., 46(5), 981-999. https://doi.org/10.1007/s00603-012-0353-8.
  19. Karaman, K., Kesimal, A. and Ersoy, H. (2015), "A comparative assessment of indirect methods for estimating the uniaxial compressive and tensile strength of rocks", Arab. J. Geosci., 8(4), 2393-2403. https://doi.org/10.1007/s12517-014-1384-0.
  20. Khandelwal, M. (2013), "Correlating P-wave velocity with the physico-mechanical properties of different rocks", Pure. Appl. Geophys., 170(4), 507-514. https://doi.org/10.1007/s00024-012-0556-7.
  21. Khandelwal, M. and Singh, T.N. (2009), "Correlating static properties of coal measures rocks with p-wave velocity", Int. J. Coal. Geol., 79, 55-60. https://doi.org/10.1016/j.coal.2009.01.004.
  22. Khanlari, G.R., Heidari, M., Sepahi-Gero, A.A. and Fereidooni, D. (2014), "Quantification of strength anisotropy of metamorphic rocks of the Hamedan province, Iran, as determined from cylindrical punch, point load and Brazilian tests", Eng. Geol., 169, 80-90. https://doi.org/10.1016/j.enggeo.2013.11.014.
  23. Khanlari, G.R., Heidari, M., Sepahi-Gero, A.A. and Fereidooni, D. (2014), "Determination of geotechnical properties of anisotropic rocks using some index tests", Geotech. Test. J., 37(2), 242-254. https://doi.org/10.1520/GTJ20130078.
  24. Kilic, A. and Teymen, A. (2008), "Determination of mechanical properties of rocks using simple methods", Bull. Eng. Geol. Environ, 67, 237-244. https://doi.org/10.1007/s10064-008-0128-3.
  25. Komurlu, E., Kesimal, A. and Demir, A.D. (2017), "Dog bone shaped specimen testing method to evaluate tensile strength of rock materials", Geomech. Eng., 12(6), 883-898. https://doi.org/10.12989/gae.2017.12.6.883.
  26. Komurlu, E., Kesimal, A. and Demir, S. (2016), "Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus", Geomech. Eng., 10(6), 775-791. http://doi.org/10.12989/gae.2016.10.6.775.
  27. Kong, F. and Shang, J. (2018), "A validation study for the estimation of Uniaxial Compressive Strength based on index tests", Rock. Mech. Rock. Eng, 51(7), 2289-2297. https://doi.org/10.1007/s00603-018-1462-9.
  28. Kong, F., Xue, Y., Qiu, D., Gong, H., and Ning, Z. (2021), "Effect of grain size or anisotropy on the correlation between uniaxial compressive strength and Schmidt hammer test for building stones", Constr. Build. Mater., 299, 123941. https://doi.org/10.1016/j.conbuildmat.2021.123941.
  29. Kumari, W., Beaumont, D.M., Ranjith, P.G., Perera, M., Avanthi Isaka, B.L. and Khandelwal, M. (2019), "An experimental study on tensile characteristics of granite rocks exposed to different high-temperature treatments", Geomech. Geophys. Geol., 5, 47-64. https://doi.org/10.1007/s40948-018-0098-2.
  30. Li, D. and Wong, L.N.Y. (2013), "Point load test on meta-sedimentary rocks and correlation to UCS and BTS", Rock. Mech. Rock. Eng., 46(4), 889-896. https://doi.org/10.1007/s00603-012-0299-x.
  31. Liu, C., Deng, H., Zhao, H. and Zhang, J. (2018), "Effects of freeze-thaw treatment on the dynamic tensile strength of granite using the Brazilian test", Cold. Reg. Sci. Technol., 155, 327-332. https://doi.org/10.1016/j.coldregions.2018.08.022.
  32. Liu, J., Chen, L., Wang, C., Man, K., Wang, L., Wang, J. and Su, R. (2014), "Characterizing the mechanical tensile behavior of Beishan granite with different experimental methods", Int. J. Rock. Mech. Min. Sci., 69, 50-58. https://doi.org/10.1016/j.ijrmms.2014.03.007.
  33. Mishra, D.A. and Basu, A. (2012), "Use of the block punch test to predict the compressive and tensile strengths of rocks", Int. J. Rock. Mech. Min. Sci., 51, 119-127. https://doi.org/10.1016/j.ijrmms.2012.01.016.
  34. OriginLab, (2019), Regression and curve Fitting-Interpreting Regression Results; OriginLab Corporation, Northampton, USA. www.originlab.com/doc/Origin-Help/Interpret-Regression-Result#Prob.3EF.
  35. Perras, M.A. and Diederichs, M.S. (2014), "A review of the tensile strength of rock: concepts and testing", Geotech. Geol. Eng., 32(2), 525-546. https://doi.org/10.1007/s10706-014-9732-0.
  36. Roy, D. G., and Singh, T.N. (2016), "Effect of heat treatment and layer orientation on the tensile strength of a crystalline rock under brazilian test condition", Rock. Mech. Rock. Eng., 49(5), 1663-1677. https://doi.org/10.1007/s00603-015-0891-y.
  37. Roy, D.G., Singh, T.N., Kodikara, J. and Das, R. (2017), "Effect of water saturation on the fracture and mechanical properties of sedimentary rocks", Rock. Mech. Rock. Eng., 50(10), 2585-2600. https://doi.org/10.1007/s00603-017-1253-8.
  38. Shang, J. (2020), "Rupture of veined granite in polyaxial compression: insights from three-dimensional discrete element method modeling", J. Geophys. Res-Sol. Ea., 125(2), 2019JB019052. https://doi.org/10.1029/2019JB019052.
  39. Shang, J., Hencher, S.R. and West, L.J. (2016), "Tensile strength of geological discontinuities including incipient bedding, rock joints and mineral veins", Rock. Mech. Rock. Eng., 49(11), 4213-4225. https://doi.org/10.1007/s00603-016-1041-x.
  40. Shen, B. and Barton, N. (2018), "Rock fracturing mechanisms around underground openings", Geomech. Eng., 16(1), 35-47. https://doi.org/10.12989/gae.2018.16.1.035.
  41. Singh, P.K., Tripathy, A., Kainthola, A., Mahanta, B., Singh, V. and Singh, T.N. (2017), "Indirect estimation of compressive and shear strength from simple index tests", Eng. Comput., 33(1), 1-11. https://doi.org/10.1007/s00366-016-0451-4.
  42. Sirdesai, N.N., Singh, T.N., Ranjith, P.G. and Singh, R. (2016), "Effect of varied durations of thermal treatment on the tensile strength of red sandstone", Rock. Mech. Rock. Eng., 50(1), 1-9. https://doi.org/10.1007/s00603-016-1047-4.
  43. Tutmez, B. (2017), "Comparison of measurement uncertainty calculation methods on example of indirect tensile strength measurement", Geomech. Eng., 12(6), 871-882. https://doi.org/10.12989/gae.2017.12.6.919.
  44. Wang, Y. and Hu, X. (2017), "Determination of tensile strength and fracture toughness of granite using notched three-point-bend samples", Rock. Mech. Rock. Eng., 50(1), 17-28. https://doi.org/10.1007/s00603-016-1098-6.
  45. Wang, Z.L., Li, Y.C. and Shen, R.F. (2007), "Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion", Int. J. Rock. Mech. Min. Sci, 44 730-738. https://doi.org/10.1016/j.ijrmms.2006.11.004.
  46. Wei, K., Ouyang, C., Duan, H., Li, Y., Chen, M., Ma, J., An, H. and Zhou, S. (2020), "Reflections on the catastrophic 2020 Yangtze River Basin flooding in southern China", Innovation, 1(2), 10038. https://doi.org/10.1016/j.xinn.2020.100038.
  47. Xia, K., Yao, W. and Wu, B. (2017), "Dynamic rock tensile strengths of Laurentian granite: Experimental observation and micromechanical model", J. Rock. Mech. Geotech. Eng. 9(1) 116-124. https://doi.org/10.1016/j.jrmge.2016.08.007.
  48. Xue, Y., Kong, F., Li, S., Zhang, L., Zhou, B., Li, G. and Gong, H. (2020), "Using indirect testing methods to quickly acquire the rock strength and rock mass classification in tunnel engineering", Int. J. Geomech., 20(5), 05020001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001633.
  49. Xue, Y., Kong, F., Li, S., Zhang, Q., Qiu, D., Su, M. and Li, Z. (2021), "China starts the world's hardest "Sky-High Road" project: Challenges and countermeasures for Sichuan-Tibet railway", The Innovation, 2(2), 100105. https://doi.org/10.1016/j.xinn.2021.100105.
  50. Yao, W., Xia, K. and Li, X. (2018), "Non-local failure theory and two-parameter tensile strength model for semi-circular bending tests of granitic rocks", Int. J. Rock. Mech. Min. Sci., 110, 9-18. https://doi.org/10.1016/j.ijrmms.2018.07.002.
  51. Yilmaz, I. (2010), "Use of the core strangle test for tensile strength estimation and rock mass classification", Int. J. Rock. Mech. Min. Sci., 47(5), 845-850. https://doi.org/10.1016/j.ijrmms.2010.03.003.
  52. Zhao, Z., Yang, J., Zhang, D. and Peng, H. (2017), "Effects of wetting and cyclic wetting-drying on tensile strength of sandstone with a low clay mineral content", Rock. Mech. Rock. Eng., 50(2), 485-491. https://doi.org/10.1007/s00603-016-1087-9.