References
- Altay, G.A. and Doekmeci, M.Q. (2003), "Some comments on the higher-order theories of piezoelectric, piezothermoelectric, and thermopiezoelectric rods and shells", Int. J. Solids Struct., 40(18), 4699-4706. https://doi.org/10.1016/S0020-7683(03)00185-9.
- Arefi, M. and Amabili, M. (2021), "A comprehensive electro-magneto-elastic buckling and bending analyses of three-layered doubly curved nanoshell, based on nonlocal three-dimensional theory", Compos. Struct., 257(1), 113101+18. https://doi.org/10.1016/j.compstruct.2020.113100.
- Arefi, M. and Arani, A.H.S. (2020), "Nonlocal vibration analysis of the three-layered FG nanoplates subjected to applied electric potential considering thickness stretching effect", Proc. Inst. Mech. E Part L J. Mat. Des. Appl., 234(9), 1183-1202. https://doi.org/10.1177/1464420720928378.
- Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. Mater., 18(5), 1-28. https://doi.org/10.1177/1099636216652581.
- Arefi, M. and Zenkour, A.M. (2018), "Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory", Steel Compos. Struct., 26(4), 421-437. http://doi.org/10.12989/scs.2018.26.4.421.
- Arefi, M., Bidgoli, E.M.R. and Civalek, O. (2020), "Bending response of FG composite doubly curved nanoshells with thickness stretching via higher-order sinusoidal shear theory", Mech. Based Des. Struct. Mach., 1, 1-29. http://doi.org/10.1080/15397734.2020.1777157.
- Bhaskar, K., Varadan, T.K. and Ali, J.S.M. (1996), "Thermoelastic solutions for orthotropic and anisotropic composite laminates", Compos. Part B, 27(5), 415-420. https://doi.org/10.1016/1359-8368(96)00005-4.
- Carrera, E. (2000), "An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multi-layered plates", J. Therm. Stresses, 23(9), 797-831. https://doi.org/10.1080/014957300750040096.
- Carrera, E. and Ciuffreda, A. (2004), "Closed-form solutions to assess multilayered plate theories for various thermal stress problems", J. Therm. Stresses, 27(11), 1001-1031. https://doi.org/10.1080/01495730490498584.
- Carrera, E. (2005), "Transverse normal strain effects on thermal stress analysis of homogeneous and layered plates", AIAA J., 43(10), 2232-2242. https://doi.org/10.2514/1.11230.
- Carrera, E., Cinefra, M. and Fazzolari, F.A. (2013), "Some results on thermal stress by using unified formulation for plates and shells", J. Therm. Stresses, 36(6), 589-625. https://doi.org/10.1080/01495739.2013.784122.
- Cho, K.N., Striz, A.G. and Bert, C.W. (1989), "Thermal stress analysis of laminate using higher-order theory in each layer", J. Therm. Stresses, 12(3), 321-332. https://doi.org/10.1080/01495738908961970.
- Dehsaraji M.L., Arefi M. and Loghman A. (2020), "Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect", Steel Compos. Struct., 34(5), 657-670. http://doi.org/10.12989/scs.2020.34.5.657.
- Dehsaraji, M.L., Arefi, M. and Loghman, A. (2021), "Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect", Defence Tech., 17(1), 119-134. https://doi.org/10.1016/j.dt.2020.01.001.
- Dehsaraji, M.L., Arefi, M. and Loghman, A. (2021), "Thermo electro-mechanical buckling of FGP nano shell with considering thickness stretching effect based on size dependent analysis", Mech. Based Des. Struct. Mach., 1-22. https://doi.org/10.1080/15397734.2021.1873146.
- Fares, M.E., Zenkour, A.M. and El-Marghany, M.Kh. (2000), "Non-linear thermal effects on the bending response of cross-ply laminated plates using refined first-order theory", Compos. Struct., 49(3), 257-267. https://doi.org/10.1016/S0263-8223(99)00137-3.
- Ghugal, Y.M. and Shimpi, R.P. (2002), "A review of refined shear deformation theories of isotropic and anisotropic laminated plates", J. Reinf. Plast. Compos., 21(9), 775-811. https://doi.org/10.1177/073168402128988481.
- Ghugal, Y.M. and Kulkarni, S.K. (2011), "Thermal stress analysis of cross-ply laminated plates using refined shear deformation theory", J. Exp. App. Mech., 2(1), 47-66.
- Ghugal, Y.M. and Kulkarni, S.K. (2013), "Thermal flexural analysis of cross-ply laminated plates using trigonometric shear deformation theory", Lat. Amer. J. Solids Struct., 10(5), 1001-1023. https://doi.org/10.1590/S1679-78252013000500008
- Ghugal, Y.M. and Kulkarni, S.K. (2012), "Effect of aspect ratio on transverse displacements for orthotropic and two layer laminated plates subjected to non-linear thermal loads and mechanical loads", Int. J. Civ. Struct. Eng., 3(1), 186-196.
- Ghugal, Y.M. and Kulkarni, S.K. (2013), "Flexural analysis of cross-ply laminated plates subjected to nonlinear thermal and mechanical loadings", Acta Mech., 224(3), 675-690. https://doi.org/10.1007/s00707-012-0774-1.
- Jane, K.C. and Hong, C.C. (2000), "Thermal bending analysis of laminated orthotropic plates by the generalized differential quadrature method", Mech. Res. Commun., 27(2), 157-164. https://doi.org/10.1016/S0093-6413(00)00076-8.
- Kapania, R.K. and Mohan, P. (1996), "Static, free vibration and thermal analysis of composite plates and shells using a flat triangular shell element", Comput. Mech., 17, 343-357. https://doi.org/10.1007/BF00368557.
- Khare, R.K., Kant, T. and Garg, A.K. (2003), "Closed-form thermo-mechanical solutions of higher-order theories of cross-ply laminated shells", Compos. Struct., 59(3), 313-340. https://doi.org/10.1016/S0263-8223(02)00245-3.
- Khdeir, A.A. and Reddy, J.N. (1991), "Thermal stresses and deflections of cross-ply laminated plates using refined plate theories", J. Therm. Stresses, 14(4), 419-438. https://doi.org/10.1080/01495739108927077.
- Kirchhoff, G. (1850), "Uber das gleichgewicht und die bewegung einer elastischen scheibe", J. fur die Reine und Angew. Math., 40, 51-88. https://doi.org/10.1515/crll.1850.40.51.
- Matsunaga, H. (1992), "The application of a two-dimensional higher-order theory for the analysis of a thick elastic plate", Comput. Struct., 45(4), 633-648. https://doi.org/10.1016/0045-7949(92)90482-F.
- Matsunaga, H. (2002), "Assessment of a global higher-order deformation theory for laminated composite and sandwich plates", Compos. Struct., 56(3), 279-291. https://doi.org/10.1016/S0263-8223(02)00013-2.
- Matsunaga, H. (2003), "Interlaminar stress analysis of laminated composite and sandwich circular arches subjected to thermal/mechanical loading", Compos. Struct., 60(3), 345-358. https://doi.org/10.1016/S0263-8223(02)00340-9.
- Matsunaga H. (2004), "A Comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings", Compos. Struct., 64(2), 161-177. https://doi.org/10.1016/j.compstruct.2003.08.001.
- Matsunaga, H. (2005), "Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory", Compos. Struct., 68(4), 439-454. https://doi.org/10.1016/j.compstruct.2004.04.010.
- Matsunaga, H. (2006), "Thermal buckling of angle-ply laminated composite and sandwich plates according to a global higher-order deformation theory", Compos. Struct., 72(2), 177-192. https://doi.org/10.1016/j.compstruct.2004.11.016.
- Matsunaga, H. (2007a), "Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading", Compos. Struct., 77(2), 249-262. https://doi.org/10.1016/j.compstruct.2005.07.002.
- Matsunaga, H. (2007b), "Thermal buckling of cross-ply laminated composite shallow shells according to a global higher-order deformation theory", Compos. Struct., 81(2), 210-221. https://doi.org/10.1016/j.compstruct.2006.08.008.
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38. https://doi.org/10.1115/1.4010217.
- Nguyen, T.N., Thai, C.H. and Xuan, H.N. (2016), "On the general framework of high order deformation theories for laminated composite plate structures: A novel unified approach", Int. J. Mech. Sci., 110, 242-255. https://doi.org/10.1016/j.ijmecsci.2016.01.012.
- Noor, A.K. and Burton, W.S. (1989), "Assessment of shear deformation theories for multilayered composite plates", Appl. Mech. Rev., 42(1), 1-13. https://doi.org/10.1115/1.3152418.
- Noor, A.K. and Burton, W.S. (1990), "Assessment of computational models for multilayered anisotropic plates", Compos. Struct., 14(3), 233-265. https://doi.org/10.1016/0263-8223(90)90050-O.
- Noor, A.K. and Burton, W.S. (1992), "Computational models for high- temperature multi-layered composite plates and shells", Appl. Mech. Rev., 45(10), 419-446. https://doi.org/10.1115/1.3119742.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. App. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Reddy, J.N. (1993), "An evaluation of equivalent single layer and layerwise theories of composite laminates", Comput. Struct., 25(1-4), 21-35. https://doi.org/10.1016/0263-8223(93)90147-I.
- Vekua, I.N. (1985), Shell Theory: General Methods of Construction, Pitman Advanced Publishing Program, Boston, U.S.A.
- Yokoo, Y., and Matsunaga, H. (1974), "A general nonlinear theory of elastic shells", Int. J. Solids Struct., 10(2), 261-274. https://doi.org/10.1016/0020-7683(74)90023-7.
- Zenkour, A.M. (2004), "Analytical solution for bending of cross-ply laminated plates under thermomechanical loading", Compos. Struct., 65(3-4), 367-379. https://doi.org/10.1016/j.compstruct.2003.11.012.
- Zhavoronok, S.A. (2014), "Vekua-type linear theory of thick elastic shells", ZAMM J. Appl. Math. Mech., 94(1-2), 164-184. https://doi.org/10.1002/zamm.201200197.
- Zozulya, V.V. (2013), "A high order theory for linear thermoelastic shells: Comparison with classical theories", J. Eng., 1-19. https://doi.org/10.1155/2013/590480.
- Zozulya, V.V. (2015), "A higher order theory for shells, plates and rods", Int. J. Mech. Sci., 103, 40-54. https://doi.org/10.1016/j.ijmecsci.2015.08.025.