References
- Babu Gunda, J. and Ganguli, R. (2008), "New rational interpolation functions for finite element analysis of rotating beams", Int. J. Mech. Sci., 50(3), 578-588. https://doi.org/10.1016/j.ijmecsci.2007.07.014.
- Badran, H.T. (2008), "Vibration attenuation of periodic sandwich beams", M.Sc. Dissertation, Cairo University, Cairo, Egypt.
- Badran, H.T. (2018), "Improving dynamic and aeroelastic performance of helicopter rotors using periodic design and piezo active control", Ph.D. Dissertation, Cairo University, Cairo.
- Badran, H.T., Tawfik, M. and Negm, H.M. (2017), "Improving wing aeroelastic characteristics using periodic design", Adv. Aircraft Spacecraft Sci., 4(4), 353-369. https://doi.org/10.12989/aas.2017.4.4.353.
- Badran, H.T., Tawfik, M. and Negm, H.M. (2019), "Improving aeroelastic characteristics of helicopter rotor blades in forward flight", Adv. Aircraft Spacecraft Sci., 6(1), 31-49. http://doi.org/10.12989/aas.2019.6.1.031.
- Banerjee, J. and Kennedy, D. (2014), "Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects", J. Sound Vib., 333(26), 7299-7312. https://doi.org/10.1016/j.jsv.2014.08.019.
- Bisplinghoff, R., Ashley, H. and Halfman, R. (1996), Aeroelasticity, Dover Publication Inc., Mineola, New York, U.S.A.
- Dayhoum, A., Zakaria, M.Y. and E. Abdelhamid, O. (2020), "Elastic torsion effects on helicopter rotor loading in forward flight", Proceedings of the AIAA Scitech 2020 Forum, Florida, Orlando, U.S.A., January.
- Filippi, M. and Carrera, E. (2015), "Flutter analysis of fixed and rotary wings through a one-dimensional unified formulation", Compos. Struct., 133, 381-389. https://doi.org/10.1016/j.compstruct.2015.07.103.
- Guertin, M. (2012), "The application of finite element Methods to Aeroelastic Lifting Surface Flutter", M.S. Dissertation, Rice University,Houston, Texas, U.S.A.
- Hammond, C.E. (1969), "Compressibility effects in helicopter rotor blade flutter", Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, U.S.A.
- Hollowell, S.J. and Dugundji, J. (1984), "Aeroelastic flutter and divergence of stiffness coupled, graphite/epoxy cantilevered plates", J. Aircraft, 21(1), 69-76. https://doi.org/10.2514/3.48224.
- Jones, W.P. and Rao, B.M. (1970), "Compressibility effects on oscillating rotor blades in hovering flight" AIAA Journal 8(2): 321-329 DOI: https://doi.org/10.2514/3.5663.
- Kee, Y.J. and Shin, S.J. (2015), "Structural dynamic modeling for rotating blades using three dimensional finite elements", J. Mech. Sci. Technol., 29(4), 1607-1618. https://doi.org/10.1007/s12206-015-0332-6.
- Lim, I.G. and Lee, I. (2009), "Aeroelastic analysis of bearingless rotors with a composite flexbeam", Compos. Struct., 88(4), 570-578. https://doi.org/10.1016/j.compstruct.2008.06.007.
- Loewy, R.G. (1957), "A two-dimensional approximation to the unsteady aerodynamics of rotary wings", J. Aeronaut. Sci., 24(2), 81-92. https://doi.org/10.2514/8.3777.
- Mead, D. (1996), "Wave propagation in continuous periodic structures: research contributions from Southampton, 1964-1995", J. Sound Vib., 190(3), 495-524. https://doi.org/10.1006/jsvi.1996.0076.
- Mead, D. and Parthan, S. (1979), "Free wave propagation in two-dimensional periodic plates", J. Sound Vib., 64(3), 325-348. https://doi.org/10.1016/0022-460X(79)90581-9.
- Nitzsche, F., D'Assuncao, D. and De Marqui Junior, C. (2015), "Aeroelastic control of non-rotating and rotating wings using the dynamic stiffness modulation principle via piezoelectric actuators", J. Intell. Mater. Syst. Struct., 26(13), 1656-1668. https://doi.org/10.1177/1045389X15572011.
- Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley and Sons, New York, U.S.A.
- Tanaka, M. and Bercin, A. (1997), "Finite element modelling of the coupled bending and torsional free vibration of uniform beams with an arbitrary cross-section", Appl. Math. Modell., 21(6), 339-344. https://doi.org/10.1016/S0307-904X(97)00030-9.
- Theodorsen, T. (1935), "General theory of aerodynamic instability and the mechanism of flutter",NACA-TR-496;Advisory Committee for Aeronautics, Langley, Virginia, U.S.A.
- Yardimoglu, B. (2010), "A novel finite element model for vibration analysis of rotating tapered Timoshenko beam of equal strength", Fin. Elem. Anal. Des., 46(10), 838-842. https://doi.org/10.1016/j.finel.2010.05.003.
- Zhou, C., Laine, J., Ichchou, M. and Zine, A. (2015), "Wave finite element method based on reduced model for one-dimensional periodic structures", Int. J. Appl. Mech., 7(2), 1550018. https://doi.org/10.1142/S1758825115500180.