DOI QR코드

DOI QR Code

Solvolysis of (1S)-(+)-Menthyl Chloroformate in Various Mixed Solvents

  • Koh, Han Joong (Department of Science Education, Jeonju National University of Education) ;
  • Kang, Suk Jin (Department of Science Education, Jeonju National University of Education)
  • Received : 2021.06.28
  • Accepted : 2021.07.21
  • Published : 2021.10.20

Abstract

The solvolysis of (1s)-(+)-menthyl chloroformate (1) were studied kinetically in 28 pure and various mixed solvents. The analysis using the extended Grunwald-Winstein equation in the solvolysis of 1 obtained the l value of 2.46 ± 0.18, the m value of 0.91 ± 0.07, and the correlation coefficient of 0.950. The solvolysis of 1 might proceed via an associative SN2 mechanism enhancing bond making than bond breaking in the transition state (TS). The value of l/m is 2.7 within the ranges of value found in associative SN2 reaction. This interpretation is further supported by a relatively large solvent kinetic isotope effect (SKIE, 2.16).

Keywords

References

  1. (a) Berthelot, M.; Pean de Saint-Gilles, L. Ann. Chem. Et Phys., 3. Ser. 1862, 65, 385.
  2. (b) Berthelot, M.; Pean de Saint-Gilles, L. Ann. Chem. Et Phys., 3. Ser. 1863, 68, 255.
  3. (a) Hughes, E. D.; Ingold, C. K. J. Chem. Soc. 1935, 244.
  4. (b) Ingold, C. K. Structure and Mechanism in Organic Chemistry; Cornell Univ. Press Ithaca: New York. 1953.
  5. (a) Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Charton, M., Ed.; Jai Press: Greenwich, CT, 1996; 1, 81.
  6. (b) Kevill, D. N. In the Chemistry of the Functional Groups: The Halides; Patais., Ed.; Wiley: New York, 1972; Chapter 12.
  7. (c) D'Souza, M. J.; Stant-Boggs, M.; White, R.; Kevill, D. N. J. Chem. Res. (S) 2003, 775.
  8. (d) Koh, H. J.; Kevill, D. N. Phosphorus, Sulfur, and Silicon 2010, 185, 865. https://doi.org/10.1080/10426500903012478
  9. (a) Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2 1997, 1721.
  10. (b) Koh, H. J.; Kang, S. J.; Kevill, D. N. Bull. Korean Chem. Soc. 2010, 31, 835. https://doi.org/10.5012/bkcs.2010.31.04.835
  11. (a) Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  12. (b) Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  13. (a) Kevill, D. N.; Miller, B. J. Org. Chem. 2002, 67, 7399. https://doi.org/10.1021/jo020467n
  14. (b) Kevill, D. N.; Carver, J. S. Org. Biomol. Chem. 2004, 2, 2040. https://doi.org/10.1039/b402093f
  15. (c) Kevill, D. N.; Park, K. H.; D'Souza, M. J.; Yaakoubd, L.; Mlynarski, S. L.; Kyong, J. B. Org. Biomolecular Chem. 2006, 4, 1580. https://doi.org/10.1039/b518129a
  16. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  17. Yew, K. H.; Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2. 1995, 2263.
  18. Kyong, J. B.; Kim, Y. G.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2000, 21, 662. https://doi.org/10.5012/BKCS.2000.21.6.662
  19. Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2009, 30, 2437. https://doi.org/10.5012/bkcs.2009.30.10.2437
  20. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741. https://doi.org/10.1021/ja00385a031
  21. Bentley, T. W.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1989, 1385.
  22. (a) Bentley, T. W.; Ryu, Z. H. J. Chem. Soc. Perkin Trans. 2 1994, 761.
  23. (b) Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 7658. https://doi.org/10.1021/ja00440a036
  24. Eyring, H.; Lin, S. H.; Lin, S. M. Basic Chemical Kinetics; Wiley-Interscience: New York, 1980.
  25. Guggenheim, E. A. Philos. Mag. 1926, 2, 538. https://doi.org/10.1080/14786442608564083