DOI QR코드

DOI QR Code

Application of DNA Analysis for Identification of Prey Items on Zooplankton: Selective Treatment Method

기수역 요각류 위내용물 유전자 분석: 소화기관 내외부 유전자의 선택적 처리방법

  • Chae, Yeon-Ji (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Oh, Hye-Ji (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Kim, Yong-Jae (Department of Life Science, Daejin University) ;
  • Chang, Kwang-Hyeon (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jo, Hyunbin (Institute for Environment and Energy, Pusan National University)
  • 채연지 (경희대학교 환경학 및 환경공학과) ;
  • 오혜지 (경희대학교 환경학 및 환경공학과) ;
  • 김용재 (대진대학교 생명과학과) ;
  • 장광현 (경희대학교 환경학 및 환경공학과) ;
  • 조현빈 (부산대학교 환경.에너지연구소)
  • Received : 2021.09.13
  • Accepted : 2021.09.24
  • Published : 2021.09.30

Abstract

Understanding the selective feeding behavior of zooplankton on phytoplankton is essential for evaluating the nutrient cycle and energy flow in the food web. Although many studies have been conducted regarding the feeding behaviors of zooplankton through gut content analyses, there are limitations in the visual identification of digested contents using a microscope. DNA techniques have been applied to overcome these limitations since they can detect and amplify small amounts of prey DNA remaining in the gut contents. We designed a method to extract prey DNA from the gut contents of the whole body of the copepod specimen and tested the resolution of DNA identification for the prey phytoplankton. The common brackish species, Sinocalanus tenellus, were collected from Saemangeum Reservoir in different sites and seasons, and gut content DNA was extracted using 2.5% bleach treatment for 2 min for removal of potential contamination sources existing in preserved specimens without dissolution of the body. The sequences of the extracted gut contents were confirmed using BLASTn suite based on the NCBI database. The phytoplankton species detected in the gut showed temporal and spatial differences. Although DNA analysis of small copepod gut contents has been suggested as an effective method to examine the dynamics of primary prey sources at the genus or species level, uncertainties such as misidentification and limitations in the detailed information of the composition still exist.

동물플랑크톤이 식물플랑크톤을 선택적으로 섭식하는 특성에 대한 이해는 수생태계 먹이사슬 내의 물질 이동에 중요하다. 하지만 해부를 통한 위내용물 추출 방법은 소형 요각류를 대상으로 적용하기에는 적절하지 않고, 유전자가 유실되거나 위내용물이 아닌 개체 외부의 유전자로 인해 오염될 가능성이 존재한다. 본 연구에서 호 내 식물 플랑크톤 조성 및 기타 환경이 상이한 두 지점을 선정하여 모든 지점에서 지속적으로 출현하는 기수성 요각류인 Sinocalanus tenellus를 대상으로 위내용물의 유전자 분석을 수행하였다. 요각류 개체 외부의 DNA를 제거하는 데 2.5%로 희석한 시판용 표백제(차아염소산나트륨 5.4%)에 2분간 처리하여 증류수로 2회 세척한 뒤 유전자를 추출하였다. 추출된 유전자는 23S rRNA을 증폭하여 서열분석을 실시하였다. Capillary sequencing 분석 결과, 원수와 처리수 및 요각류 위내용물에서 다양한 분류군(규조강, 녹조강, 남조강, 와편모조강, 은편모조강, 황갈조강)에 속하는 식물플랑크톤이 검출되었으며, 새만금호 내 시공간 차이에 따라 상이한 경향을 보였다. 현미경을 이용하여 동정한 식물플랑크톤 군집 조성의 경우 규조강이 우점한 반면, 동일한 원수의 유전자 분석(capillary sequencing) 결과에서는 주로 녹조강, 남조강 및 와편모조강이 우점하여 다소 상반된 경향을 나타냈다. 본 연구에서 적용한 위내용물 분석에 특화된 외부 유전자 제거 전처리 방법은 농도와 처리시간 조절 등의 응용방법에 따라 다양한 동물플랑크톤 분류군에 적용이 가능할 것으로 사료된다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2020R1C1C1009066).

References

  1. Blenckner, T., K. Pettersson and J. Padisak. 2002. Lake Plankton as Tracer to Discover Climate Signals. Verhandlungen Internationale Vereinigung Limnologie 28: 1324-1327.
  2. Chae, Y.-J., H.-J. Oh, K.-H. Chang, I.-S. Kwak and H. Jo. 2021. Application of Next-Generation Sequencing for the Determination of the Bacterial Community in the Gut Contents of Brackish Copepod Species (Acartia hudsonica, Sinocalanus tenellus, and Pseudodiaptomus inopinus). Animals 11: 542. https://doi.org/10.3390/ani11020542
  3. Chang, K.H., D. Hideyuki, N. Yuichiro, N. Gui-Sook and N. Shin-ichi. 2014. Feeding behavior of the copepod Temora turbinata: clearance rate and prey preference on the diatom and microbial food web components in coastal area. Journal of Ecology and Environment 37: 225-229. https://doi.org/10.5141/ecoenv.2014.027
  4. Chen, M., D. Kim, H. Liu and C.K. Kang. 2018. Variability in copepod trophic levels and feeding selectivity based on stable isotope analysis in Gwangyang Bay of the southern coast of the Korean Peninsula. Biogeosciences 15: 2055-2073. https://doi.org/10.5194/bg-15-2055-2018
  5. Gibbs, R.A., P.N. Nguyen, L.J. McBride, S.M. Koepf and C.T. Caskey. 1989. Identification of mutations leading to the Lesch-Nyhan syndrome by automated direct DNA sequencing of in vitro amplified cDNA. Proceedings of the National Academy of Sciences of the United States of America 86: 1919-1923. https://doi.org/10.1073/pnas.86.6.1919
  6. Greenstone, M.H., D.C. Weber, T.A. Coudron, M.E. Payton and J.S. Hu. 2012. Removing external DNA contamination from arthropod predators destined for molecular gut-content analysis. Molecular Ecology Resources 12: 464-469. https://doi.org/10.1111/j.1755-0998.2012.03112.x
  7. Hada, A. and S. Uye. 1991. Cannibalistic feeding-behavior of the brackish-water copepod Sinocalanus tenellus. Journal of Plankton Research 13: 155-166. https://doi.org/10.1093/plankt/13.1.155
  8. Hendey, N.I. 1974. The permanganate method for cleaning using diatoms. Nova Hedwigia. Beiheft 64: 305-323.
  9. Hill, J.T. 2014. Poly peak parser: Method and software for identification of unknown indels using sanger sequencing of polymerase chain reaction products. Developmental Dynamics 243: 1632-1636. https://doi.org/10.1002/dvdy.24183
  10. Hirai, J., Y. Hamamoto, D. Honda and K. Hidaka. 2018. Possible aplanochytrid (Labyrinthulea) prey detected using 18S metagenetic diet analysis in the key copepod species Calanus sinicus in the coastal waters of the subtropical western North Pacific. Plankton and Benthos Research 13: 75-82. https://doi.org/10.3800/pbr.13.75
  11. Ho, T.W., J. Hwang, M.K. Cheung, H.S. Kwan and C.K. Wong. 2017. DNA-based study of the diet of the marine calanoid copepod Calanus sinicus. Journal of Experimental Marine Biology and Ecology 494: 1-9. https://doi.org/10.1016/j.jembe.2017.04.004
  12. Jo, H., B. Choi, K. Park, W.-S. Kim and I.-S. Kwak. 2020. First Gut Content Analysis of 4th Instar Midge Larvae (Diptera: Chronomidae) in Large-Scale Weirs Using a DNA Meta-Barcoding Approach. International Journal of Environmental Research and Public Health 17: 2856. https://doi.org/10.3390/ijerph17082856
  13. Kim, S.-G., S.-H. Joung, C.-Y. Ahn, S.-R. Ko and S.M. Boo. 2010. Annual variation of Microcystis genotypes and their potential toxicity in water and sediment from a eutrophic reservoir. FEMS Microbiology Ecology 74: 93-102. https://doi.org/10.1111/j.1574-6941.2010.00947.x
  14. Kimoto, K., S. Uye and T. Onbe. 1986. Growth characteristics of a brackish-water calanoid copepod Smocalanus lenellus in relation to temperature and salinity. Bulletin of the Plankton Society of Japan 33: 43-57.
  15. Kircher, M. and J. Kelso. 2010. High-throughput DNA sequencing-concepts and limitations. Bioessays 32: 524-536. https://doi.org/10.1002/bies.200900181
  16. Kuo, J., C. Chen, C. Han, Y. Ju and K. Siong. 2020. Analyses of diet preference of larval orange-spotted grouper (Epinephelus coioides) grown under inorganic fertilization method using next-generation sequencing. Aquaculture 735916. https://doi.org/10.1016/j.aquaculture.2020.735916
  17. Knisely, K. and W. Geller. 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia 69: 86-94. https://doi.org/10.1007/BF00399042
  18. Lee, S.W., C. Park, D.B. Lee and J.K. Lee. 2014. Effect of freshwater discharge on plankton in Cheonsu bay, Korea during the rainy season. The Sea Journal of the Korean Society of Oceanography 19: 41-52.
  19. Leray, M., J.Y. Yang, C.P. Meyer, S.C. Mills, N. Agudelo, V. Ranwez, J.T. Boehm and R.J. Machida. 2013. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology 10: e34.
  20. Moro, C.V., O. Crouzet, S. Rasconi, A. Thouvenot, G. Coffe, I. Batisson and J. Bohatier. 2009. New design strategy for development of specific primer sets for PCR-based detection of Chlorophyceae and Bacillariophyceae in environmental samples. Applied and Environmental Microbiology 75: 5729-5733. https://doi.org/10.1128/AEM.00509-09
  21. NCBI Resource Coordinators. 2014. Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 42: D7-D17. https://doi.org/10.1093/nar/gkt1146
  22. Oda, Y., S. Nakano, J.M. Suh, H.J. Oh, M.Y. Jin, Y.J. Kim, K.H. Chang. 2018. Spatiotemporal variability in a copepod community associated with fluctuations in salinity and trophic state in an artificial brackish reservoir at Saemangeum, Korea. PLoS ONE 13: 1-18.
  23. Oh, H.J., P.H. Krogh, H.G. Jeong, G.J. Joo, I.S. Kwak, S.J. Hwang, J.S. Gim, K.H. Chang and H. Jo. 2020. Pretreatment method for DNA barcoding to analyze gut contents of rotifers. Applied Sciences 10: 1064. https://doi.org/10.3390/app10031064
  24. Rakhesh, M., A.V. Raman, T. Ganesh, P. Chandramohan and F. Dehairs. 2013. Small copepods structuring meso-zooplankton community dynamics in a tropical estuary-coastal system. Estuarine, Coastal and Shelf Science 126: 7-22. https://doi.org/10.1016/j.ecss.2013.03.025
  25. Reis-Filho, J. 2009. Next-generation sequencing. Breast Cancer Research 11: S12. https://doi.org/10.1186/bcr2431
  26. Sailley, S.F., L. Polimene, A. Mitra, A. Atkinson and J.I. Allen. 2015. Impact of zooplankton food selectivity on plankton dynamics and nutrient cycling. Journal of Plankton Research 37: 519-529. https://doi.org/10.1093/plankt/fbv020
  27. Uye, S., T. Shimazu, M. Yamamuro, Y. Ishitobi and H. Kamiya. 2000. Geographical and seasonal variations in mesozooplankton abundance and biomass in relation to environmental parameters in Lake Shinji-Ohashi River-Lake Nakaumi brackish-water system, Japan. Journal of Marine Systems 26: 193-207. https://doi.org/10.1016/S0924-7963(00)00054-3
  28. Uye, S. 2011. Human forcing of the copepod-fish-jellyfish triangular trophic relationship. Hydrobiologia. 666: 71-83. https://doi.org/10.1007/s10750-010-0208-9
  29. Yang, J., H. Jiang, W. Liu and B. Wang. 2018. Benthic algal community structures and their response to geographic distance and environmental variables in the Qinghai-Tibetan lakes with different salinity. Frontiers in Microbiology 9: 578. https://doi.org/10.3389/fmicb.2018.00578
  30. Yeh, H.D., J.M. Questel, K.R. Maas and A. Bucklin. 2020. Metabarcoding analysis of regional variation in gut contents of the copepod Calanus finmarchicus in the North Atlantic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography 180: 104738. https://doi.org/10.1016/j.dsr2.2020.104738