과제정보
이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음.
참고문헌
- Abrahamsen, B.C. & Faltinsen, O.M., 2011. The effect of air leakage and heat exchange on the decay of entrapped air pocket slamming oscillations. Physics of Fluids, 23(10), pp.1-17.
- Abrahamsen, B.C. & Faltinsen, O.M., 2012. The natural frequency of the pressure oscillations inside a water-wave entrapped air pocket on a rigid wall. Journal of Fluids and Structure, 35, pp.200-212. https://doi.org/10.1016/j.jfluidstructs.2012.07.004
- Bredmose, H. Bullock, G.N. & Hogg, A.J., 2015. Violent breaking wave impacts. Part 3. Effects of scale and aeration. Journal of Fluid Mechanics, 765, pp.82-113. https://doi.org/10.1017/jfm.2014.692
- Daru, V. Quere, P.L. Duluc, M.C. & Maitre, O.L., 2010. A numerical method for the simulation of low Mach number liquid-gas flows. Journal of Computational Physics, 229, pp.8844-8867. https://doi.org/10.1016/j.jcp.2010.08.013
- Denner, F. Xiao, C.N. & Wachem, B.G.M., 2018. Pressure-based algorithm for compressible interfacial flows with acoustically-conservative interface discretization. Journal of Computational Physics, 367, pp.192-234. https://doi.org/10.1016/j.jcp.2018.04.028
- Gilmanov, A. & Sotiropoulos, F., 2005. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. Journal of Computational Physics, 207(2), pp.457-492. https://doi.org/10.1016/j.jcp.2005.01.020
- Koh, C.G. Gao, M. & Luo, C., 2011. A new particle method for simulation of in compressible free surface flow problems. International Journal for Numerical Methods in Engineering, 89(12), pp.1582-1604. https://doi.org/10.1002/nme.3303
- Kwakkela, M. Breugema, W.P. & Boersma, B.J., 2013. Extension of a CLSVOF method for droplet-laden flows with a coalescence/breakup model. Journal of Computational Physics, 253, pp.166-188. https://doi.org/10.1016/j.jcp.2013.07.005
- Liu, K. & Pletcher, R.H., 2007. A fractional step method for solving the compressible Navier-Stokes equations. Journal of Computational Physics, 226(2), pp.1930-1951. https://doi.org/10.1016/j.jcp.2007.06.026
- Lugni, C. Brocchini, M. & Faltinsen, O.M., 2010a. Evolution of the air cavity during a depressurized wave impact. II. The dynamic field. Physics of Fluids, 22, 056102. https://doi.org/10.1063/1.3409491
- Lugni, C. Miozzi, M. Brocchini, M. & Faltinsen,O., 2010b. Evolution of the air cavity during a depressurized wave impact. I. The kinematic flow field. Physics of Fluids, 22, 056101. https://doi.org/10.1063/1.3407664
- Luo, M. Koh, C.G. & Bai, W., 2016a. A three-dimensional particle method for violent sloshing under regular and irregular excitations. Ocean Engineering, 120, pp.52-63. https://doi.org/10.1016/j.oceaneng.2016.05.015
- Luo, M. Koh, C.G. Bai, W. & Gao, M., 2016b. A particle method for two-phase flows with compressible air pocket. International Journal for Numerical Methods in Engineering, 108(7), pp.695-721. https://doi.org/10.1002/nme.5230
- Ma, Z.H. Causon, D.M. Qian, L. Mingham, C.G. & Ferrer, P.M., 2016. Numerical investigation of air enclosed wave impacts in a depressurised tank. Ocean Engineering, 123, pp.15-27. https://doi.org/10.1016/j.oceaneng.2016.06.044
- Shin, S., 2018. Simulation of pressure oscillation in water caused by the compressibility of entrapped air in dam break flow. Journal of the Society of Naval Architects of Korea, 55(1), pp.56-65. https://doi.org/10.3744/SNAK.2018.55.1.56
- Shin, S., 2019. Variation in air cushion effects caused by isentropic and isothermal processes of entrapped air in incompressible free surface flows. Journal of Computational Fluids Engineering, 24(3), pp.76-83. https://doi.org/10.6112/kscfe.2019.24.3.076
- Shin, S., 2020. Simulation of compressibility of entrapped air in an incompressible free surface flow using a pressure-based method for unified equations. International Journal for Numerical Methods in Fluids, 92(10), pp.1274-1289. https://doi.org/10.1002/fld.4827
- Shin, S. & Bae, S.Y., 2013. Simulation of water entry of an elastic wedge using the FDS scheme and HCIB method. Journal of Hydrodynamics, 25(3), pp.450-458. https://doi.org/10.1016/s1001-6058(11)60384-4
- Shin, S. Bae, S.Y. Kim, I.C. & Kim, Y.J., 2009. Effects of flexibility on propulsive force acting on a heaving foil. Ocean Engineering, 36, pp.285-294. https://doi.org/10.1016/j.oceaneng.2008.12.002
- Shin, S. Bae, S.Y. Kim, I.C. Kim, Y.J. & Goo, J.S., 2007. Computations of flow over a flexible plate using the hybrid Cartesian/immersed boundary method. International Journal for Numerical Methods in Fluids, 55(3), pp.263-282. https://doi.org/10.1002/fld.1459
- Sun, H. Sun, Z. Liang, S. & Zhao, X., 2019. Numerical study of air compressibility effects in breaking wave impacts using a CIP-based model. Ocean Engineering, 174, pp.159-168. https://doi.org/10.1016/j.oceaneng.2019.01.050
- Sussman, M. & Puckett, E.G., 2000. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162, pp.301-337. https://doi.org/10.1006/jcph.2000.6537
- Tamellini, M. Parolini, N. & Verani, M., 2018. An optimal control problem for two-phase compressible-incompressible flows. Computers & Fluids, 172, pp.538-548. https://doi.org/10.1016/j.compfluid.2018.03.039
- Wang, B.S. Li, P. Gao, Z. & Don, W.S., 2018. An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws. Journal of Computational Physics, 374, pp.469-477. https://doi.org/10.1016/j.jcp.2018.07.052
- Wang, L. Currao, G.M.D. Han, F. Neely, A.J. Young, J. & Tian, F.B., 2017. An immersed boundary method for fluid-structure interaction with compressible multiphase flows. Journal of Computational Physics, 346, pp.131-151. https://doi.org/10.1016/j.jcp.2017.06.008
- Yokoi, K., 2013. A practical numerical framework for free surface flows based on CLSVOF method, multi-moment methods and density-scaled CSF model: numerical simulations of droplet splashing. Journal of Computational Physics, 232, pp.252-271. https://doi.org/10.1016/j.jcp.2012.08.034
- Zhu, J. & Qiu, J., 2016. A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. Journal of Computational Physics, 318, pp.110-121. https://doi.org/10.1016/j.jcp.2016.05.010