DOI QR코드

DOI QR Code

통합보존식 해석과 HCIB 법을 이용한 슬로싱 탱크 내부 갇힌 공기에 의한 압력 진동 모사

Simulation of a Pulsating Air Pocket in a Sloshing Tank Using Unified Conservation Laws and HCIB Method

  • 신상묵 (부경대학교 조선해양시스템공학과)
  • Shin, Sangmook (Department of Naval Architecture and Marine Systems Engineering, Pukyong National University)
  • 투고 : 2021.05.03
  • 심사 : 2021.07.16
  • 발행 : 2021.10.20

초록

The code developed using a pressure-based method for unified conservation laws of incompressible/compressible fluids is expanded to handle moving or deforming body boundaries using the hybrid Cartesian/immersed boundary method. An instantaneous pressure field is calculated from a pressure Poisson equation for the whole fluid domain, including the compressible gas region. The polytropic gas is assumed for the compressible fluid so that the energy equation is decoupled. Immersed boundary nodes are identified based on edges crossing body boundaries. The velocity vector is reconstructed at the immersed boundary node using an interpolation along the assigned local normal line. The developed code is validated by comparing the time histories of pressure and wave elevation for sloshing in a rectangular and a membrane-type tank. The validated code is applied to simulate air cushion effects in a rectangular tank under sway motion. Time variations of pressure fields are analyzed in detail as the air pocket pulsates. It is shown that the contraction and expansion of the air pocket dominate the pressure loads on the wall of the tank. The present results are in good agreement with other experimental and computational results for the amplitude and the decay of the pressure oscillations measured at the pressure gauges.

키워드

과제정보

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음.

참고문헌

  1. Abrahamsen, B.C. & Faltinsen, O.M., 2011. The effect of air leakage and heat exchange on the decay of entrapped air pocket slamming oscillations. Physics of Fluids, 23(10), pp.1-17.
  2. Abrahamsen, B.C. & Faltinsen, O.M., 2012. The natural frequency of the pressure oscillations inside a water-wave entrapped air pocket on a rigid wall. Journal of Fluids and Structure, 35, pp.200-212. https://doi.org/10.1016/j.jfluidstructs.2012.07.004
  3. Bredmose, H. Bullock, G.N. & Hogg, A.J., 2015. Violent breaking wave impacts. Part 3. Effects of scale and aeration. Journal of Fluid Mechanics, 765, pp.82-113. https://doi.org/10.1017/jfm.2014.692
  4. Daru, V. Quere, P.L. Duluc, M.C. & Maitre, O.L., 2010. A numerical method for the simulation of low Mach number liquid-gas flows. Journal of Computational Physics, 229, pp.8844-8867. https://doi.org/10.1016/j.jcp.2010.08.013
  5. Denner, F. Xiao, C.N. & Wachem, B.G.M., 2018. Pressure-based algorithm for compressible interfacial flows with acoustically-conservative interface discretization. Journal of Computational Physics, 367, pp.192-234. https://doi.org/10.1016/j.jcp.2018.04.028
  6. Gilmanov, A. & Sotiropoulos, F., 2005. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. Journal of Computational Physics, 207(2), pp.457-492. https://doi.org/10.1016/j.jcp.2005.01.020
  7. Koh, C.G. Gao, M. & Luo, C., 2011. A new particle method for simulation of in compressible free surface flow problems. International Journal for Numerical Methods in Engineering, 89(12), pp.1582-1604. https://doi.org/10.1002/nme.3303
  8. Kwakkela, M. Breugema, W.P. & Boersma, B.J., 2013. Extension of a CLSVOF method for droplet-laden flows with a coalescence/breakup model. Journal of Computational Physics, 253, pp.166-188. https://doi.org/10.1016/j.jcp.2013.07.005
  9. Liu, K. & Pletcher, R.H., 2007. A fractional step method for solving the compressible Navier-Stokes equations. Journal of Computational Physics, 226(2), pp.1930-1951. https://doi.org/10.1016/j.jcp.2007.06.026
  10. Lugni, C. Brocchini, M. & Faltinsen, O.M., 2010a. Evolution of the air cavity during a depressurized wave impact. II. The dynamic field. Physics of Fluids, 22, 056102. https://doi.org/10.1063/1.3409491
  11. Lugni, C. Miozzi, M. Brocchini, M. & Faltinsen,O., 2010b. Evolution of the air cavity during a depressurized wave impact. I. The kinematic flow field. Physics of Fluids, 22, 056101. https://doi.org/10.1063/1.3407664
  12. Luo, M. Koh, C.G. & Bai, W., 2016a. A three-dimensional particle method for violent sloshing under regular and irregular excitations. Ocean Engineering, 120, pp.52-63. https://doi.org/10.1016/j.oceaneng.2016.05.015
  13. Luo, M. Koh, C.G. Bai, W. & Gao, M., 2016b. A particle method for two-phase flows with compressible air pocket. International Journal for Numerical Methods in Engineering, 108(7), pp.695-721. https://doi.org/10.1002/nme.5230
  14. Ma, Z.H. Causon, D.M. Qian, L. Mingham, C.G. & Ferrer, P.M., 2016. Numerical investigation of air enclosed wave impacts in a depressurised tank. Ocean Engineering, 123, pp.15-27. https://doi.org/10.1016/j.oceaneng.2016.06.044
  15. Shin, S., 2018. Simulation of pressure oscillation in water caused by the compressibility of entrapped air in dam break flow. Journal of the Society of Naval Architects of Korea, 55(1), pp.56-65. https://doi.org/10.3744/SNAK.2018.55.1.56
  16. Shin, S., 2019. Variation in air cushion effects caused by isentropic and isothermal processes of entrapped air in incompressible free surface flows. Journal of Computational Fluids Engineering, 24(3), pp.76-83. https://doi.org/10.6112/kscfe.2019.24.3.076
  17. Shin, S., 2020. Simulation of compressibility of entrapped air in an incompressible free surface flow using a pressure-based method for unified equations. International Journal for Numerical Methods in Fluids, 92(10), pp.1274-1289. https://doi.org/10.1002/fld.4827
  18. Shin, S. & Bae, S.Y., 2013. Simulation of water entry of an elastic wedge using the FDS scheme and HCIB method. Journal of Hydrodynamics, 25(3), pp.450-458. https://doi.org/10.1016/s1001-6058(11)60384-4
  19. Shin, S. Bae, S.Y. Kim, I.C. & Kim, Y.J., 2009. Effects of flexibility on propulsive force acting on a heaving foil. Ocean Engineering, 36, pp.285-294. https://doi.org/10.1016/j.oceaneng.2008.12.002
  20. Shin, S. Bae, S.Y. Kim, I.C. Kim, Y.J. & Goo, J.S., 2007. Computations of flow over a flexible plate using the hybrid Cartesian/immersed boundary method. International Journal for Numerical Methods in Fluids, 55(3), pp.263-282. https://doi.org/10.1002/fld.1459
  21. Sun, H. Sun, Z. Liang, S. & Zhao, X., 2019. Numerical study of air compressibility effects in breaking wave impacts using a CIP-based model. Ocean Engineering, 174, pp.159-168. https://doi.org/10.1016/j.oceaneng.2019.01.050
  22. Sussman, M. & Puckett, E.G., 2000. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162, pp.301-337. https://doi.org/10.1006/jcph.2000.6537
  23. Tamellini, M. Parolini, N. & Verani, M., 2018. An optimal control problem for two-phase compressible-incompressible flows. Computers & Fluids, 172, pp.538-548. https://doi.org/10.1016/j.compfluid.2018.03.039
  24. Wang, B.S. Li, P. Gao, Z. & Don, W.S., 2018. An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws. Journal of Computational Physics, 374, pp.469-477. https://doi.org/10.1016/j.jcp.2018.07.052
  25. Wang, L. Currao, G.M.D. Han, F. Neely, A.J. Young, J. & Tian, F.B., 2017. An immersed boundary method for fluid-structure interaction with compressible multiphase flows. Journal of Computational Physics, 346, pp.131-151. https://doi.org/10.1016/j.jcp.2017.06.008
  26. Yokoi, K., 2013. A practical numerical framework for free surface flows based on CLSVOF method, multi-moment methods and density-scaled CSF model: numerical simulations of droplet splashing. Journal of Computational Physics, 232, pp.252-271. https://doi.org/10.1016/j.jcp.2012.08.034
  27. Zhu, J. & Qiu, J., 2016. A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. Journal of Computational Physics, 318, pp.110-121. https://doi.org/10.1016/j.jcp.2016.05.010