DOI QR코드

DOI QR Code

영농형 태양광 발전의 진단을 위한 지능형 예측 시스템

Intelligent Prediction System for Diagnosis of Agricultural Photovoltaic Power Generation

  • 정설령 (순천대학교 멀티미디어공학과) ;
  • 박경욱 (전남대학교 문화컨텐츠학부) ;
  • 이성근 (순천대학교 멀티미디어공학과)
  • 투고 : 2021.08.27
  • 심사 : 2021.10.17
  • 발행 : 2021.10.31

초록

영농형 태양광 발전은 농지 상부에 태양광 발전 설비를 설치하는 방식으로 농작물과 전기를 동시에 생산함으로써 농가 소득을 증대시키는 새로운 모델이다. 최근 영농형 태양광 발전을 활용하는 다양한 시도들이 이루어지고 있다. 영농형 태양광 발전은 기존의 태양광 발전과는 달리 비교적 높은 구조물 상부에 설치하게 되므로 유지 보수가 상대적으로 어렵다는 단점이 있다. 이러한 문제를 해결하기 위해 지능적이고 효율적인 운용 및 진단 기능이 요구된다. 본 논문에서는 영농형 태양광 발전 설비의 전력 생산량을 수집, 저장하여 지능적인 예측 모델을 구현하기 위한 예측 및 진단 시스템의 설계 및 구현에 대해 논한다. 제안된 시스템은 태양광 발전량과 환경 센서 데이터를 기반으로 발전량을 예측하여 설비의 이상 유무를 판별하며 설비의 노화 정도를 산출하여 사용자에게 제공한다.

Agricultural Photovoltaic power generation is a new model that installs solar power generation facilities on top of farmland. Through this, it is possible to increase farm household income by producing crops and electricity at the same time. Recently, various attempts have been made to utilize agricultural solar power generation. Agricultural photovoltaic power generation has a disadvantage in that maintenance is relatively difficult because it is installed on a relatively high structure unlike conventional photovoltaic power generation. To solve these problems, intelligent and efficient operation and diagnostic functions are required. In this paper, we discuss the design and implementation of a prediction and diagnosis system to collect and store the power output of agricultural solar power generation facilities and implement an intelligent prediction model. The proposed system predicts the amount of power generation based on the amount of solar power generation and environmental sensor data, determines whether there is an abnormality in the facility, calculates the aging degree of the facility and provides it to the user.

키워드

과제정보

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 지역지능화혁신인재양성(Grand ICT연구센터) 사업의 연구결과로 수행되었음(IITP-2021-2020-0-01489)

참고문헌

  1. S. Bracco, M. Brignone, F. Delfino, and R. Procopio, "An energy man-agement system for the savona campus smart polygeneration microgrid," IEEE Syst. J., vol. 11, no. 3, 2017, pp. 1799-1809. https://doi.org/10.1109/JSYST.2015.2419273
  2. L. Oneto, F. Laureri, M. Robba, F. Delfino, and D. Anguita, "Data-driven photovoltaic power production nowcasting and forecasting for polygener- ation microgrids," IEEE Syst. J., vol. 12, no. 3, Sept. 2018, pp. 2842-2853. https://doi.org/10.1109/jsyst.2017.2688359
  3. M. Ceci, R. Corizzo, F. Fumarola, D. Malerba, and A. Rashkovska, "Predictive modeling of PV energy production: How to set up the learning task for a better prediction?" IEEE Trans. Ind. Informat., vol. 13, no. 3, 2016, pp. 956-966. https://doi.org/10.1109/TII.2016.2604758
  4. D. Van Der Meer, G. R. C. Mouli, G. M. E. Mouli, L. R. Elizondo, and P. Bauer, "Energy management system with PV power forecast to optimally charge EVs at the workplace," IEEE Trans. Ind. Infomat., vol. 14, no. 1, 2016, pp. 311-320.
  5. S. Yun, Y. Kim, and S. Lee, "A Case Study on the Introduction of Solar Sharing in Major Countries," in Proc. Korean society for new and renewable energy Conf., Apr. 2018, pp. 157-157.
  6. U. K. Das, "Forecasting of photovoltaic power generation and model optimization: A review, Renewable Sustain," Energy Rev., vol. 81, no. 1, 2018, pp. 912-928.
  7. A. Florita, B. M. Hodge, and K. Orwig, "Identifying wind and solar ramping events," in Proc. IEEE Green Technol. Conf., Apr. 2013, pp. 147-152.
  8. J. Joo, J. Oh, K. Park, and Y. Lee, "Development of a System-Independent Mobile Smart Shelter using Solar Energy," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 6, 2020, pp. 1061-1068. https://doi.org/10.13067/JKIECS.2020.15.6.1061
  9. F. Golestaneh, P. Pinson, and H. B. Gooi, "Very short-term nonpara metric probabilistic forecasting of renewable energy generation-With application to solar energy," IEEE Trans. Power Syst., vol. 31, no. 5, 2016, pp. 3850-3863. https://doi.org/10.1109/TPWRS.2015.2502423
  10. K. Park, K. Ban, S. Song, and E. Kim, "Cloud-based Intelligent Management System for Photovoltaic Power Plants," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 3, 2012, pp. 591-596. https://doi.org/10.13067/JKIECS.2012.7.3.591
  11. D. Kim, D. Kwon, L. Park, J. Kim, and S. Cho, "Multiscale LSTM-Based Deep Learning for Very short Term Photovoltaic Power Generation Forecasting in Smart City Energy Management," in IEEE Systems Journal, vol. 15, no. 1, 2021, pp. 346-354. https://doi.org/10.1109/JSYST.2020.3007184
  12. S. Lee, "Design and Application of LoRa-based Network Protocol in IoT Networks," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 6, 2019, pp. 1089-1096. https://doi.org/10.13067/JKIECS.2019.14.6.1089