Acknowledgement
The author would like to thank Respina Lubricant Supply Company (www.respinalub.ir) for its support in the present work.
References
- Abdulrazzaq, M.A., Muhammad, A.K., Kadhim, Z.D. and Faleh, N.M. (2020), "Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM", Coupl. Syst. Mech., 9(3), 201-217. https://doi.org/10.12989/csm.2020.9.3.201.
- Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020b), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res., 8(2), 157. https://doi.org/10.12989/anr.2020.8.2.157.
- Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020a), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Mater. Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033.
- Barati, M.R. (2017), "Magneto-hygro-thermal vibration behavior of elastically coupled nanoplate systems incorporating nonlocal and strain gradient effects", J. Brazil. Soc. Mech. Sci. Eng., 39(11), 4335-4352. https://doi.org/10.1007/s40430-017-0890-x.
- Barati, M.R. (2018a), "Nonlocal stress-strain gradient vibration analysis of heterogeneous double-layered plates under hygro-thermal and linearly varying in-plane loads", J. Vib. Control, 24(19), 4630-4647. https://doi.org/10.1177%2F1077546317731672. https://doi.org/10.1177%2F1077546317731672
- Barati, M.R. (2018b), "Porosity-dependent vibration and dynamic stability of compositionally gradient nanofilms using nonlocal strain gradient theory", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(17), 3144-3155. https://doi.org/10.1177%2F0954406217729421. https://doi.org/10.1177%2F0954406217729421
- Barati, M.R. (2018c), "Temperature and porosity effects on wave propagation in nanobeams using biHelmholtz nonlocal strain-gradient elasticity", Eur. Phys. J. Plus, 133(5), 170. https://doi.org/10.1140/epjp/i2018-11993-0.
- Barati, M.R. and Shahverdi, H. (2017), "Dynamic modeling and vibration analysis of double-layered multiphase porous nanocrystalline silicon nanoplate systems", Eur. J. Mech.-A/Solid., 66, 256-268. https://doi.org/10.1016/j.euromechsol.2017.07.010.
- Barati, M.R. and Shahverdi, H. (2018a), "Forced vibration of porous functionally graded nanoplates under uniform dynamic load using general nonlocal stress-strain gradient theory", J. Vib. Control, 24(20), 4700-4715. https://doi.org/10.1177%2F1077546317733832. https://doi.org/10.1177%2F1077546317733832
- Barati, M.R. and Shahverdi, H. (2018b), "Nonlinear thermal vibration analysis of refined shear deformable FG nanoplates: two semi-analytical solutions", J. Brazil. Soc. Mech. Sci. Eng., 40(2), 1-15. https://doi.org/10.1007/s40430-018-0968-0.
- Barati, M.R. and Zenkour, A. (2019b), "Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates", Iran. J. Sci. Technol., Tran. Mech. Eng., 43(3), 393-404. https://doi.org/10.1007/s40997-018-0215-4.
- Barati, M.R. and Zenkour, A.M. (2019a), "Thermal post-buckling analysis of closed circuit flexoelectric nanobeams with surface effects and geometrical imperfection", Mech. Adv. Mater. Struct., 26(17), 1482-1490. https://doi.org/10.1080/15376494.2018.1432821.
- Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
- Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
- Ebrahimi, F. and Barati, M.R. (2019d), "Vibration analysis of biaxially compressed double-layered graphene sheets based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct., 26(10), 854-865. https://doi.org/10.1080/15376494.2018.1430267.
- Ebrahimi, F. and Barati, M.R. (2017), "Dynamic modeling of preloaded size-dependent nano-crystalline nanostructures", Appl. Math. Mech., 38(12), 1753-1772. https://doi.org/10.1007/s10483-017-2291-8.
- Ebrahimi, F. and Barati, M.R. (2018a), "Free vibration analysis of couple stress rotating nanobeams with surface effect under in-plane axial magnetic field", J. Vib. Control, 24(21), 5097-5107. https://doi.org/10.1177%2F1077546317744719. https://doi.org/10.1177%2F1077546317744719
- Ebrahimi, F. and Barati, M.R. (2018b), "Vibration analysis of nonlocal strain gradient embedded single-layer graphene sheets under nonuniform in-plane loads", J. Vib. Control, 24(20), 4751-4763. https://doi.org/10.1177%2F1077546317734083. https://doi.org/10.1177%2F1077546317734083
- Ebrahimi, F. and Barati, M.R. (2018c), "Hygro-thermal vibration analysis of bilayer graphene sheet system via nonlocal strain gradient plate theory", J. Brazil. Soc. Mech. Sci. Eng., 40(9), 1-15. https://doi.org/10.1007/s40430-018-1350-y.
- Ebrahimi, F. and Barati, M.R. (2018d), "Static stability analysis of double-layer graphene sheet system in hygro-thermal environment", Microsyst. Technol., 24(9), 3713-3727. https://doi.org/10.1007/s00542-018-3827-0.
- Ebrahimi, F. and Barati, M.R. (2018e), "Influence of neutral surface position on dynamic characteristics of inhomogeneous piezo-magnetically actuated nanoscale plates", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(17), 3125-3143. https://doi.org/10.1177%2F0954406217728977. https://doi.org/10.1177%2F0954406217728977
- Ebrahimi, F. and Barati, M.R. (2018f), "Vibration analysis of parabolic shear-deformable piezoelectrically actuated nanoscale beams incorporating thermal effects", Mech. Adv. Mater. Struct., 25(11), 917-929. https://doi.org/10.1080/15376494.2017.1323141.
- Ebrahimi, F. and Barati, M.R. (2018g), "Nonlocal and surface effects on vibration behavior of axially loaded flexoelectric nanobeams subjected to in-plane magnetic field", Arab. J. Sci. Eng., 43(3), 1423-1433. https://doi.org/10.1007/s13369-017-2943-y.
- Ebrahimi, F. and Barati, M.R. (2018h), "Size-dependent thermally affected wave propagation analysis in nonlocal strain gradient functionally graded nanoplates via a quasi-3D plate theory", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(1), 162-173. https://doi.org/10.1177%2F0954406216674243. https://doi.org/10.1177%2F0954406216674243
- Ebrahimi, F. and Barati, M.R. (2019a), "Hygrothermal effects on static stability of embedded single-layer graphene sheets based on nonlocal strain gradient elasticity theory", J. Therm. Stress., 42(12), 1535-1550. https://doi.org/10.1080/01495739.2019.1662352.
- Ebrahimi, F. and Barati, M.R. (2019b), "A nonlocal strain gradient mass sensor based on vibrating hygrothermally affected graphene nanosheets", Iran. J. Sci. Technol., Tran. Mech. Eng., 43(2), 205-220. https://doi.org/10.1007/s40997-017-0131-z.
- Ebrahimi, F. and Barati, M.R. (2019c), "Damping vibration behavior of viscoelastic porous nanocrystalline nanobeams incorporating nonlocal-couple stress and surface energy effects", Iran. J. Sci. Technol., Tran. Mech. Eng., 43(2), 187-203. https://doi.org/10.1007/s40997-017-0127-8.
- Ebrahimi, F., Barati, M.R. and Mahesh, V. (2019a), "Dynamic modeling of smart magneto-electro-elastic curved nanobeams", Adv. Nano Res., 7(3), 145. http://dx.doi.org/10.12989/anr.2019.7.3.145.
- Ebrahimi, F., Barati, M.R. and Tornabene, F. (2019b), "Mechanics of nonlocal advanced magneto-electroviscoelastic plates", Struct. Eng. Mech., 71(3), 257-269. https://doi.org/10.12989/sem.2019.71.3.257.
- Elmerabet, A.H., Heireche, H., Tounsi, A. and Semmah, A. (2017), "Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model", Adv. Nano Res., 5(1), 1-12. https://doi.org/10.12989/anr.2017.5.1.001.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020a), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Comput. Des., 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
- Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020b), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631.
- Forsat, M., Badnava, S., Mirjavadi, S.S., Barati, M.R. and Hamouda, A.M.S. (2020), "Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory", Eur. Phys. J. Plus, 135(1), 1-19. https://doi.org/10.1140/epjp/s13360-019-00042-x.
- Kunbar, L.A.H., Hamad, L.B., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects", Smart Struct. Syst., 25(5), 619-630. https://doi.org/10.12989/sss.2020.25.5.619.
- Li, L. and Hu, Y. (2016), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Comput. Mater. Sci., 112, 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044.
- Li, L., Hu, Y. and Ling, L. (2016b), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E: Low Dimens. Syst. Nanostr., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028.
- Li, L., Li, X. and Hu, Y. (2016a), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazil. Soc. Mech. Sci. Eng., 38(8), 2193-2211. https://doi.org/10.1007/s40430-015-0482-6.
- Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
- Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", J. Strain Anal. Eng. Des., 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285. https://doi.org/10.1177%2F0309324720917285
- Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Phys. A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020h), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020i), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020j), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
- Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B.M. and Hamouda, A.M.S. (2020e), "Postbuckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
- Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020l), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020d), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020k), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Adv. Concrete Constr., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.
- Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.
- Muhammad, A.K., Hamad, L.B., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment", Adv. Mater. Res., 8(3), 237-257. https://doi.org/10.12989/amr.2019.8.3.237.
- Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
- Sayyad, A.S. and Ghugal, Y.M. (2018), "An inverse hyperbolic theory for FG beams resting on WinklerPasternak elastic foundation", Adv. Aircraf. Spacecraf. Sci., 5(6), 671-689. https://doi.org/10.12989/aas.2018.5.6.671.
- Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2020b), "Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Adv. Nano Res., 8(3), 191-202. https://doi.org/10.12989/anr.2020.8.3.191.
- Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020a), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265.
- Shokravi, M. (2017), "Buckling analysis of embedded laminated plates with agglomerated CNT-reinforced composite layers using FSDT and DQM", Geomech. Eng., 12(2), 327-346. https://doi.org/10.12989/gae.2017.12.2.327.
- Singhal, A. and Chaudhary, S. (2019), "Mechanics of 2D elastic stress waves propagation impacted by concentrated point source disturbance in composite material bars", J. Appl. Comput. Mech., 6(4), 788-800. https://doi.org/10.22055/JACM.2019.29666.1621.
- Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(01), 1750008. https://doi.org/10.1142/S1758825117500089.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Xiao, W., Li, L. and Wang, M. (2017), "Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory", Appl. Phys. A, 123(6), 388. https://doi.org/10.1007/s00339-017-1007-1.
- Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux", Steel Compos. Struct., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909.
- Zhu, X. and Li, L. (2017), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019.