DOI QR코드

DOI QR Code

Dynamic response analysis of a foam-based nanoscale plate based on finite strip method

  • Sadeghi, Zahra (Engineering Department, Respina Lubricant Supply Company)
  • Received : 2019.12.19
  • Accepted : 2021.05.11
  • Published : 2021.08.25

Abstract

The present article dealswith a dynamic response analysis of a foam-based nanoscale plate based on finite strip method (FSM). The nanoscale plate formulation has been adopted based upon a higher order plate theory and then, a higher orderfinite strip has been used to solve the problem.The considered finite strip is capable of considering the bending displacement and also shear deformation effects. The foam-based material has been treated as a porous material with some particular pore distribution. The non-uniformity ofstrain field as well asthe nonlocality ofstress field have been incorporatedwith the usage of nonlocalstrain gradient elasticity.It is clearly showen that the proposed solution based on finite strip method can accurately simulate the dynamic response of considered plate under external forces.The scale factors due to smallsize of the plate and foam-based material willshow a remarkable impact on the dynamic response.

Keywords

Acknowledgement

The author would like to thank Respina Lubricant Supply Company (www.respinalub.ir) for its support in the present work.

References

  1. Abdulrazzaq, M.A., Muhammad, A.K., Kadhim, Z.D. and Faleh, N.M. (2020), "Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM", Coupl. Syst. Mech., 9(3), 201-217. https://doi.org/10.12989/csm.2020.9.3.201.
  2. Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020b), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res., 8(2), 157. https://doi.org/10.12989/anr.2020.8.2.157.
  3. Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020a), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Mater. Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033.
  4. Barati, M.R. (2017), "Magneto-hygro-thermal vibration behavior of elastically coupled nanoplate systems incorporating nonlocal and strain gradient effects", J. Brazil. Soc. Mech. Sci. Eng., 39(11), 4335-4352. https://doi.org/10.1007/s40430-017-0890-x.
  5. Barati, M.R. (2018a), "Nonlocal stress-strain gradient vibration analysis of heterogeneous double-layered plates under hygro-thermal and linearly varying in-plane loads", J. Vib. Control, 24(19), 4630-4647. https://doi.org/10.1177%2F1077546317731672. https://doi.org/10.1177%2F1077546317731672
  6. Barati, M.R. (2018b), "Porosity-dependent vibration and dynamic stability of compositionally gradient nanofilms using nonlocal strain gradient theory", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(17), 3144-3155. https://doi.org/10.1177%2F0954406217729421. https://doi.org/10.1177%2F0954406217729421
  7. Barati, M.R. (2018c), "Temperature and porosity effects on wave propagation in nanobeams using biHelmholtz nonlocal strain-gradient elasticity", Eur. Phys. J. Plus, 133(5), 170. https://doi.org/10.1140/epjp/i2018-11993-0.
  8. Barati, M.R. and Shahverdi, H. (2017), "Dynamic modeling and vibration analysis of double-layered multiphase porous nanocrystalline silicon nanoplate systems", Eur. J. Mech.-A/Solid., 66, 256-268. https://doi.org/10.1016/j.euromechsol.2017.07.010.
  9. Barati, M.R. and Shahverdi, H. (2018a), "Forced vibration of porous functionally graded nanoplates under uniform dynamic load using general nonlocal stress-strain gradient theory", J. Vib. Control, 24(20), 4700-4715. https://doi.org/10.1177%2F1077546317733832. https://doi.org/10.1177%2F1077546317733832
  10. Barati, M.R. and Shahverdi, H. (2018b), "Nonlinear thermal vibration analysis of refined shear deformable FG nanoplates: two semi-analytical solutions", J. Brazil. Soc. Mech. Sci. Eng., 40(2), 1-15. https://doi.org/10.1007/s40430-018-0968-0.
  11. Barati, M.R. and Zenkour, A. (2019b), "Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates", Iran. J. Sci. Technol., Tran. Mech. Eng., 43(3), 393-404. https://doi.org/10.1007/s40997-018-0215-4.
  12. Barati, M.R. and Zenkour, A.M. (2019a), "Thermal post-buckling analysis of closed circuit flexoelectric nanobeams with surface effects and geometrical imperfection", Mech. Adv. Mater. Struct., 26(17), 1482-1490. https://doi.org/10.1080/15376494.2018.1432821.
  13. Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
  14. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  15. Ebrahimi, F. and Barati, M.R. (2019d), "Vibration analysis of biaxially compressed double-layered graphene sheets based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct., 26(10), 854-865. https://doi.org/10.1080/15376494.2018.1430267.
  16. Ebrahimi, F. and Barati, M.R. (2017), "Dynamic modeling of preloaded size-dependent nano-crystalline nanostructures", Appl. Math. Mech., 38(12), 1753-1772. https://doi.org/10.1007/s10483-017-2291-8.
  17. Ebrahimi, F. and Barati, M.R. (2018a), "Free vibration analysis of couple stress rotating nanobeams with surface effect under in-plane axial magnetic field", J. Vib. Control, 24(21), 5097-5107. https://doi.org/10.1177%2F1077546317744719. https://doi.org/10.1177%2F1077546317744719
  18. Ebrahimi, F. and Barati, M.R. (2018b), "Vibration analysis of nonlocal strain gradient embedded single-layer graphene sheets under nonuniform in-plane loads", J. Vib. Control, 24(20), 4751-4763. https://doi.org/10.1177%2F1077546317734083. https://doi.org/10.1177%2F1077546317734083
  19. Ebrahimi, F. and Barati, M.R. (2018c), "Hygro-thermal vibration analysis of bilayer graphene sheet system via nonlocal strain gradient plate theory", J. Brazil. Soc. Mech. Sci. Eng., 40(9), 1-15. https://doi.org/10.1007/s40430-018-1350-y.
  20. Ebrahimi, F. and Barati, M.R. (2018d), "Static stability analysis of double-layer graphene sheet system in hygro-thermal environment", Microsyst. Technol., 24(9), 3713-3727. https://doi.org/10.1007/s00542-018-3827-0.
  21. Ebrahimi, F. and Barati, M.R. (2018e), "Influence of neutral surface position on dynamic characteristics of inhomogeneous piezo-magnetically actuated nanoscale plates", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(17), 3125-3143. https://doi.org/10.1177%2F0954406217728977. https://doi.org/10.1177%2F0954406217728977
  22. Ebrahimi, F. and Barati, M.R. (2018f), "Vibration analysis of parabolic shear-deformable piezoelectrically actuated nanoscale beams incorporating thermal effects", Mech. Adv. Mater. Struct., 25(11), 917-929. https://doi.org/10.1080/15376494.2017.1323141.
  23. Ebrahimi, F. and Barati, M.R. (2018g), "Nonlocal and surface effects on vibration behavior of axially loaded flexoelectric nanobeams subjected to in-plane magnetic field", Arab. J. Sci. Eng., 43(3), 1423-1433. https://doi.org/10.1007/s13369-017-2943-y.
  24. Ebrahimi, F. and Barati, M.R. (2018h), "Size-dependent thermally affected wave propagation analysis in nonlocal strain gradient functionally graded nanoplates via a quasi-3D plate theory", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(1), 162-173. https://doi.org/10.1177%2F0954406216674243. https://doi.org/10.1177%2F0954406216674243
  25. Ebrahimi, F. and Barati, M.R. (2019a), "Hygrothermal effects on static stability of embedded single-layer graphene sheets based on nonlocal strain gradient elasticity theory", J. Therm. Stress., 42(12), 1535-1550. https://doi.org/10.1080/01495739.2019.1662352.
  26. Ebrahimi, F. and Barati, M.R. (2019b), "A nonlocal strain gradient mass sensor based on vibrating hygrothermally affected graphene nanosheets", Iran. J. Sci. Technol., Tran. Mech. Eng., 43(2), 205-220. https://doi.org/10.1007/s40997-017-0131-z.
  27. Ebrahimi, F. and Barati, M.R. (2019c), "Damping vibration behavior of viscoelastic porous nanocrystalline nanobeams incorporating nonlocal-couple stress and surface energy effects", Iran. J. Sci. Technol., Tran. Mech. Eng., 43(2), 187-203. https://doi.org/10.1007/s40997-017-0127-8.
  28. Ebrahimi, F., Barati, M.R. and Mahesh, V. (2019a), "Dynamic modeling of smart magneto-electro-elastic curved nanobeams", Adv. Nano Res., 7(3), 145. http://dx.doi.org/10.12989/anr.2019.7.3.145.
  29. Ebrahimi, F., Barati, M.R. and Tornabene, F. (2019b), "Mechanics of nonlocal advanced magneto-electroviscoelastic plates", Struct. Eng. Mech., 71(3), 257-269. https://doi.org/10.12989/sem.2019.71.3.257.
  30. Elmerabet, A.H., Heireche, H., Tounsi, A. and Semmah, A. (2017), "Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model", Adv. Nano Res., 5(1), 1-12. https://doi.org/10.12989/anr.2017.5.1.001.
  31. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  32. Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020a), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Comput. Des., 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
  33. Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020b), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631.
  34. Forsat, M., Badnava, S., Mirjavadi, S.S., Barati, M.R. and Hamouda, A.M.S. (2020), "Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory", Eur. Phys. J. Plus, 135(1), 1-19. https://doi.org/10.1140/epjp/s13360-019-00042-x.
  35. Kunbar, L.A.H., Hamad, L.B., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects", Smart Struct. Syst., 25(5), 619-630. https://doi.org/10.12989/sss.2020.25.5.619.
  36. Li, L. and Hu, Y. (2016), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Comput. Mater. Sci., 112, 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044.
  37. Li, L., Hu, Y. and Ling, L. (2016b), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E: Low Dimens. Syst. Nanostr., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028.
  38. Li, L., Li, X. and Hu, Y. (2016a), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
  39. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  40. Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazil. Soc. Mech. Sci. Eng., 38(8), 2193-2211. https://doi.org/10.1007/s40430-015-0482-6.
  41. Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
  42. Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", J. Strain Anal. Eng. Des., 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285. https://doi.org/10.1177%2F0309324720917285
  43. Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Phys. A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.
  44. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.
  45. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020h), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
  46. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020i), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
  47. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020j), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
  48. Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B.M. and Hamouda, A.M.S. (2020e), "Postbuckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
  49. Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020l), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
  50. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020d), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
  51. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020k), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Adv. Concrete Constr., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.
  52. Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.
  53. Muhammad, A.K., Hamad, L.B., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment", Adv. Mater. Res., 8(3), 237-257. https://doi.org/10.12989/amr.2019.8.3.237.
  54. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
  55. Sayyad, A.S. and Ghugal, Y.M. (2018), "An inverse hyperbolic theory for FG beams resting on WinklerPasternak elastic foundation", Adv. Aircraf. Spacecraf. Sci., 5(6), 671-689. https://doi.org/10.12989/aas.2018.5.6.671.
  56. Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2020b), "Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Adv. Nano Res., 8(3), 191-202. https://doi.org/10.12989/anr.2020.8.3.191.
  57. Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020a), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265.
  58. Shokravi, M. (2017), "Buckling analysis of embedded laminated plates with agglomerated CNT-reinforced composite layers using FSDT and DQM", Geomech. Eng., 12(2), 327-346. https://doi.org/10.12989/gae.2017.12.2.327.
  59. Singhal, A. and Chaudhary, S. (2019), "Mechanics of 2D elastic stress waves propagation impacted by concentrated point source disturbance in composite material bars", J. Appl. Comput. Mech., 6(4), 788-800. https://doi.org/10.22055/JACM.2019.29666.1621.
  60. Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(01), 1750008. https://doi.org/10.1142/S1758825117500089.
  61. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  62. Xiao, W., Li, L. and Wang, M. (2017), "Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory", Appl. Phys. A, 123(6), 388. https://doi.org/10.1007/s00339-017-1007-1.
  63. Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux", Steel Compos. Struct., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909.
  64. Zhu, X. and Li, L. (2017), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019.